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CHAPTER 1
INTRODUCTION

1.1 Problem Definition

It takes enormous technical and financial resources and commitment to successfully
develop a long range surveillance radar. Two successful examples are the US Navy E-2C
Hawkeye and US Air Force E-3B AWACS Surveillance Radars. These airborne
surveillance radar systems are pictured in Figure 1.1-1. It is said that the success rate of a
major radar development program from conception to deployment is on the order of 1%
(1], Therefore, when a new threat emerges, it is preferable with respect to cost and risk to
seek improvements in detection performance of an existing and proven radar system rather

than embarking on a totally new radar development program.

This report  presents for the first time a detailed analysis of the Scan-to-Scan
Processing (SSP) concept which has been pursued over the past ten or more years through
several independent industrial research and development programs as a means for
improving radar detection performance.

The past efforts to evaluate performance have primarily relied on the manipulation
of raw radar data at the output of the analog-to-digital converter with a computer simulation
package. Although significant improvement has been claimed, the careful analysis and
interpretation of the results presented in this: report reveals that only a marginal
improvement can be attributed to the Scan-to-Scan Processing. Consequently, an alternate
approach which relies on scan rate reduction and noncoherent integration (NCI), in lieu of
the M of N binary post detection integration widely used today, is proposed and
investigated. It is shown that slowing down the scan rate coupled with noncoherent

integration, can potentially deliver higher performance improvement with less risk.




(b) USN E-2C Hawkeye AEW Aircraft with Rotodome Antenna

Figure 1.1-1

Examples of Airborne Surveillance Radar Systems

o al



In this section a description of the radar under consideration in its baseline
configuration is presented first. The constraints under which improvement is sought are

then specified. Finally, the criterion by which the improvement is measured is discussed.

1.1.1 Description of the Airborne Long Range Surveillance Radar under Consideration

A brief description of the receiver/processor portion of the radar system under
consideration in its baseline configuration is given here. Performance of this receiver/
processor will provide a basis for determining any performance improvement in the
modified configuration. The radar for which a detection improvement is sought is a high
PREF, pulse doppler radar with a superheterodyne receiver followed by an analog-to-digital
converter (ADC) and digital signal processor section. A basic receiver and processor block
diagram, common to all pulse doppler radars, is shown in Figure 1.1-2.

A superheterodyne receiver typically has two frequency down conversion stages to
reach the final intermediate frequency (IF). Not only is amplification at IF less costly and
more stable than at a microwave frequency, but the wider percentage bandwidth occupied
by the desired signal simplifies the filtering operation. In addition, the superheterodyne
receiver allows variation of the local oscillator frequency to follow any desired or
unintentional tuning variation of the transmitter without disturbing the filtering at IF. The
reference signal applied to the first mixer is provided by the STALQ (stable local oscillator)
while the reference signal applied to the second mixer is provided by the COHO (coherent
local oscillator). The STALO signal has the frequency stability required for coherent
processing while the COHO can be used to introduce phase correction needed to

compensate for radar platform motion or transmitter phase variations.

A description of the flow of the received signal (target signal plus clutter plus other

interference such as jamming noise when present) is presented below. A detailed analysis
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leading to probabilities of detection for Swerling and Marcum target models is presented in
Chapter 3.

It is assumed that the carrier frequency of the received signal is (fo+fd+mbc)
where fg is the carrier frequency of the transmitted signal, f4 is the doppler shift of a
moving target as it would be observed from a motionless platform, and fiphc is the
doppler shift of the return from a ground patch in the direction of the main beam due to the
platform motion along the line of antenna pointing direction. The thermal noise generated
from all sources is modeled by the additive white Gaussian noise process, n1(t). In
practice, the low noise amplifier (LNA) at the receiver front end essentially determines the
noise level. The low pass filter following the first mixer separates out the signal at the
difference frequency. The frequency offset fipbe can be incorporated into the COHO signal

sO as to center the mainbeam clutter spectrum about the IF frequency, fIF.

The bandwidth of the band-pass filter at fIF is equal to 2B where B is the half
power signal bandwidth. For analytic convenience, this filter is assumed to be an ideal
band-pass filter whose gain is zero outside the pass band. This filter has no effect on the
band-limited input signal but limits the bandwidth of the noise process. It forms a part of
the matched filter which also includes the two paths for the quadrature components. The
down-converter, sometimes referred to as a synchronous detector, converts the signal at IF

to baseband while preserving both phase and amplitude information.

The analog-to-digital converter (ADC) provides a means for signal processing in
the digital domain with the attendant advantage in flexibility, reliability, repeatability and
precision. Its bandwidth, linearity, and dynamic range are important factors for coherent
signal processing and is often the limiting factor in the bandwidth and instantaneous

dynamic range of the system. Ina pulse doppler radar, particularly with a high PRF




waveform, the mainbeam clutter usually sets the system dynamic range requirements. The ]

clutter canceller is another critical signal processing element in a pulse doppler radar. If
not cancelled, even with an infinite dynamic range processor downstream, the mainbeam
clutter will appear as residue clutter in the otherwise clutter free doppler zone as a result of

integration through doppler filter sidelobes.

The clutter canceller in this radar is a cascade of two second order recursive digital
filter sections, each with two poles and two zeros. This is designed to provide a desired
shaped velocity response in the frequency domain. The drawback is that a significantly
long time domain transient response is generated during which signal integration cannot be
performed. Other forms of clutter cancellers are multistage delay line cancellers with
binomial coefficients as weights, and the optimum linear filter whose weights are given by
the elements of the eigen vector corresponding to the minimum eigen value of the clutter
correlation matrix. Some analysis and recommendations for further work on these filters

are given in chapter 6.

When a coded waveform having a long time-bandwidth product is transmitted so as
to increase energy without exceeding the transmitter peak power, a pulse compressor will
follow the clutter canceller. This restores the range resolution capability of the radar by
generating an equivalent narrow pulse. In effect, the pulse compressor is a matched filter
for the coded waveform. The doppler filter bank is implemented by a two rail pipeline FFT
(fast Fourier transform) and performs a 128 point discrete Fourier transform where the
input samples are windowed with a 42 dB Hamming weight. Not shown in the block
diagram is the comer turning memory before the FFT which selects all of the pulses for a
given range gate from the sequence of transmitted pulse returns where all of the range

information is contained. The receiver/processor up to this point is assumed to be linear.

6
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For each range gate and each doppler filter cell the inphase channel output and the
quadrature channel output multiplied by -j are added together, and the real and the
imaginary parts are separated, squared and summed, and then square rooted to obtain the
envelope voltage. This becomes a single observation variable in the decision space. That
is, all the pulses which are passed into the coherent integrator (FFT) result in a single pulse
for each range-doppler cell in the radar detection context. Also, this is the sufficient
statistic resulting from the Bayes likelihood ratio test for well known Swerling and
Marcum target models with unknown initial phase embedded in white Gaussian noise.

For these signal plus noise statistics, the above described receiver is the optimum receiver
that maximizes the probability of detection. Its derivation is given by DiFranco and Rubin

[2]. The testis performed separately for every azimuth-range-doppler cell.

The constant false alarm rate (CFAR) circuit provides the noise average to be used
to determine the test threshold. False alarm rate is very sensitive to threshold level. For
example, one dB change in the threshold can result in three orders of magnitude change in
false alarm probability. To prevent fluctuations in the false alarm rate, actual noise
averages are used to determine the threshold. Typically a cell averaging CFAR is used
whereby envelope voltages of a predetermined number of range cells on both sides of the
range cell under test are used for averaging. The two cells immediately adjacent to the test
cell are excluded from the CFAR block. This average is multiplied by a fixed constant and
is used as a threshold to decide whether the test statistic is signal plus noise (when above

the threshold) or noise alone (when below the threshold) in the target detector.

In this radar, received radar pulses in a beam dwell are divided into three coherent
processing intervals (CPI's) each operating at a different pulse repetition frequency (PRF)
and each of which results in an observation variable for every range-doppler cell for

detection decision making. The different PRF's are used so that range ambiguities can be




resolved by means of the Chinese remainder theorem. Before the post detection binary
integration, filter normalization is performed to eliminate the variability in doppler
frequency for a specific doppler cell. The M of N post detection integrator used in this
radar requires that all three of the observation samples corresponding to a particular
doppler filter in a bearn dwell must have exceeded the threshold before the triplet can be

declared as a candidate target with the velocity corresponding to that doppler filter.

Target report processing includes filter unfolding to resolve whether the velocity is
opening or closing, and range ambiguity resolution to determine the unambiguous range for
each candidate target. Azimuth, range and filter centroiding, deghosting to remove false
target reports when more than one detection occurs in a doppler filter, and coordinate
conversion to a stabilized coordinate system are part of the target report processing
function. The results are sent out as radar reports which can be displayed on an operator

console screen directly or after further processing by the Kalman filter tracker.

1.1.2 System Constraints

The system constraints to be observed in seeking detection performance
improvement are specified in this section. Specifically, the antenna and transmitter are not
allowed to be changed in the proposed modifications. As a result, the following system
parameters are held fixed:

1. Antenna gain and radiation pattern

2. Transmitter power and duty factor

3. Radar operating frequency (carrier frequency and its operating frequency range).

The reason for these constraints is obvious. Changes to any of the above require a
major new development with the associated cost, schedule and technical risks. Under these

constraints, the potential area for investigation that would yield detection performance




improvement lies in signal processing changes whose implementation has been greatly
facilitated by the recent breakthroughs in signal processing hardware and memory
devices. As a consequence, the Scan-to-Scan Processing (SSP) concept, similar to Track
Before Detect (TBD), has been promoted as a promising concept for significant detection
performance improvement. However, a detailed analysis to support the projected benefits
and associated drawbacks has not been carried out. A rigorous analysis of the SSP concept
is one of the accomplishments of this dissertation. But first, the impact of the power-
aperture product constraint is reviewed so as to provide awareness on the limits of detection
performance improvement possible when the fundamental radar asset, namely the power-
aperture product, is fixed.

A “rule of thumb' in radar engineering is that specification of power-aperture
product, surveillance volume and the search frame time determines the detection
performance against a given target, regardless of operating frequency, ignoring the
secondary effects such as frequency dependent system losses, etc. The search frame time
is the time it takes for the antenna beam to sweep the specified surveillance volume once at
a predetermined rate. That the limit of detection performance is set by the above
parameters can be seen by applying the radar range equation to the specified surveillance
volume to be searched and utilizing the relationship between the solid angle subtended by
the antenna beam and its aperture.

To see this, a simple radar range equation is first developed for the case where the
dwell time or the number of pulses available for integration is given. If the transmitter
power Py is radiated isotropically, the power density produced at range R is given by

power per unit
arca at range R

P,
4nR?2




If a transmitting antenna of one way power gain Gy is used, the power density in

the direction of this gain is

power per unit area at range| _ P, G,
Rin the given direction | 4q,p2

The signal strength reflected toward the radar per unit solid angle from a target of radar

cross section (RCS) o illuminated by the transmitted wave at range R is

reflected power per unit solid angle| _ P; G; x 9
in the direction of theradar |~ 47p2 ~ 4n

The reflected wave arrives back at the radar with a power density given by

reflected power per | _ P, G, 9 x L
unit arca at the receiver]  4qgp2 “ 4n  R2

The amount of power intercepted by the receiving antenna is this power density multiplied

by the effective aperture defined by
) 2
effective |- A G
receiving aperture 4rn (1.1-1)

where A is the radar wave ler.gth. The received signal power, S, is then expressed as

S = PGG, Ao
(4r)’ R4 (1.1-2)
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It is convenient to introduce a concept of equivalent input noise level, N, to arrive
at the output signal-to-noise ratio at the end of the linear portion of the receiver before

envelope detection. To facilitate this, the noise factor, NF, and effective noise temperature,

Te, of an amplifier or a receiver with a gain G are introduced. The noise factor is defined

as

S/N)in N
NF = = Nout
S/MNoww kTBG

where k is the Boltzman's constant, B is the bandwidth, and Tg is the standard temperature
taken to be 290°K.

The noise factor can be interpreted as the ratio of the actual available output noise
power to the noise power which would be available if the receiver merely amplified the

input noise. This may be expressed as

NE = KToBG+AN _ 1+ —AN
kT,BG kT,BG (1.1-3)

where AN is the additional noise introduced by the receiver. From equation (1.1-3), AN

can be expressed as

AN = (NF - 1) kT,BG . (1.1-4)

When two receivers are in cascade, the output noise is due to the sum of the noise
from receiver 1 plus the noise introduced by receiver 2. Let the noise factor for the cascade

and receivers 1 and 2 be denoted by NF, NF1, and NF?, respectively. Then, the output

noise can be expressed as
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Now =kToBNFGG2

= kToBNF;G1G2 + AN,
= kToBNF1G1G2 + (NF2-1)kToBG2

Dividing by kToBGG2 gives
s (NF2-1)
i' = NFj + .
177G, (1.1-5)

The effective noise temperature, Te, is defined as that temperature at the input of the

receiver which would account for the noise AN at the output. It follows that

AN = kT.BG = (NF-1)kT(BG ,
and
Te=(NF-DTp (1.1-6)

For a cascade of two receivers, let the effective noise temperature of the cascade and
receivers 1 and 2 be denoted by Te, Te1, and Te2, respectively. Similar to the noise factor,

the noise temperature of the cascade is given by

T
T.=T, + 52
TG . (1.1-7)

If the antenna can be considered to represent a source at the reference temperature,

the equivalent input noise power would be

N =kToBNr .
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In practice, the antenna will have an effective temperature, T, which differs from Tg. The
equivalent input noise at the receiver front end can be expressed in terms of an effective
input temperature T,; which accounts for both the receiver and antenna aoise. Note that
N = k[To(NF-1)+T,)B = kT¢;B .
The effective input temperature is
Tei= TANFg-1) + T, .
The operating noise factor is defined to be
NF":%’ (1.1-8)
It follows that the equivalent input noise is

N = kT, B NF,.

With the introduction of NFy, and use of Eqn. (1.1-2), the per pulse signal-to-noise

ratio (S/N), at the input to the detector assuming no multi-pulse integration becomes

(S_) - PGAo
N’y (4m) R4KTB NFoL (1.1-9)

where the parameters are:
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peak transmitted power which is actually the average power during the
pulse duration

one way antenna power gain (G¢=Gr assumed)

range to the target

target radar cross section

wave length at the radar operating frequency

Boltzman's constant (1.38x10-2 W/Hz°K)

standard temperature (290°K)

receiver bandwidth

operating noise factor as defined in Eqn.(1.1-8)

total system loss factor not reflected in the operating noise factor.

The integrated signal-to-noise ratio, (S/N), is the per pulse signal-to-noise ratio,

(S/N)p, multiplied by Nj the number of pulses coherently integrated. To account for

integration losses

(i.e., the nonideality of the integrator) the loss factor, L, is increased

accordingly. Then,

PG %o Ny

(%) ) (4n

If 1/B is replaced with the pulse width, T, the integrated SNR is equal to the energy 1

OVer noise power

When Q,

out the surveillan

can be put into a

entire surveillance volume is expressed as i

Y R4kToB NFoL (1.1-10)

density, a well known matched filter equation.

the surveillance volume in solid angle, and T, the frame time to search

ce volume are specified, the surveillance radar range equation, (1.1-10)

different form. First, the number of antenna beam spots, ng, to cover the




where @ is the solid angle subtended by the antenna beam. Note that

e
]
> P

where A is the effective antenna aperture. In terms of A and A, ng becomes

=0A
ng= .
H 2_2

Let Tr and Fr denote pulse repetition interval and pulse repetition frequency,
respectively. PA, the average power, and N, the number of pulses available for
integration in a beam dwell, are expressed as

Pe _PF,
Po=-L =
AT, TB (1.1-11)

s QA (1.1-12)

The peak power, Py, can be expressed in terms of the average power, PA, from
equation (1.1-11) as

P.=P, B .
tTTAFE, (1.1-13)
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The previously defined expression for the integrated SNR, Eqn. (1.1-10) can be
rewritten by substituting Eqn. (1.1-13) for Py, and Eqn. (1.1-12) for N,

(5_) - P, G222 6 Ny
N 4n)3 R4k To B NFoL

=BA§(41!’A}2 g (g Tg x’)
Fr {32] @nPR4kToBNF L\ QA

___(PAA)OTE
4TtR*Q k To BNFy L (1.1-14)

PA A in the above equation is called the power-aperture product. Equation (1.1-14)
is an important surveillance radar equation which shows that the integrated SNR is
proportional to the power-aperture product independent of the operating frequency. It
shows that when power-aperture product is fixed, radar performance is fairly well set
unless its frame time and/or the surveillance volume is modified. The effect of varying
these parameters is described in Chapter S.

In addition to the power-aperture product constraint, performance improvement
must be achieved without losing capability to resolve the range ambiguity inherentin a

High PRF radar, and without exceeding the allowed system false alarm rate.
In a pulse doppler radar, either a range or a velocity ambiguity or both result as the

consequence of a pulse repetition frequency (PRF) selection. The unambiguous range, Ry,

is given by
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where c is the speed of light and Ty is the pulse repetition interval (PRI). For an

unambiguous range of 400 nautical miles, the PRI, Tr, must be chosen such that
Tr 2 2 x 400 x 1852/3x108 = 4.9387 milliseconds.
Hence, the PRF must be 202.4 Hz or lower.

The unambiguous radial velocity, vmax, is given by the doppler frequency
corresponding to one-half the PRF. Note that

PRF/2 = fdmax = 2Vmaxﬂ-.

Therefore, vimax is determined by the PRF as well as the carrier frequency of the radar

chosen. For unambiguous measurements of both incoming and outgoing target velocities of

up to 1800 knots, the PRF at an operating frequency of 3 GHz should be

PRF 2 2ffg0« = 4 x (1800 x 1852/3600)/(3x108/3x10%) = 37 KHz.

Because of design implementation considerations some radars use PRF that is equal to just

the maximum expected doppler frequency of the target. This results in an ambiguity as to
opening or closing of the target velocity.

The superiority of a High PRF radar for detecting high speed airborne targets over a
heavy ground traffic environment has been well demonstrated as was shown in the perfor-

mance comparison between E-3 AWACS and E-2C Hawkeye radars over the European
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continent. The E2-C radar operating at p-band (UHF frequency) has a broad antenna
beam. With its low PRF waveform the largest mainbeam clutter doppler spread due to
platform motion when the antenna beam is pointed normal to the platform velocity vector
occupies almost 30% of the PRF interval. This PRF approximately corresponds to a 200
knot target speed. Thus, the radar cannot see targets whose speeds fall in this blind velocity
zone which can be alleviated somewhat by PRF staggering. Of course, high PRF radars
suffer from eclipsed range. The real difficulty with the overland performance of the E-2C
radar, even with its scan-to-scan processing to suppress detections from ground vehicles
and discrete land clutters, is its inability to distinguish slow moving ground vehicles from
the high priarity airborne threats in the portion of the PRF interval where the radar is not
blinded. The high PRF radar is much more complex to build, however.

The range ambiguity in a high PRF radar is resolved by the so called Chinese
remainder theorem {3, p19-16]. This approach permits a unique direct computation of the
true range cell, R¢, from the multiple ambiguous range cell numbers, A1, A2, -, Ap. In
particular, for the three PRF system Rc is given by

R¢ =(C1A1 + C2A2 + C3A3) modulo(mmom3)
where the mj's are the number of range cells in each PRI and are required to be relatively
prime. That is, R is the remainder of the term within parentheses, when divided by
m]m2m3 as many times as possible. The constants Ci, C2, and C3 are related to mi, m2,
and m3 by the following equations:

C1 = bim2m3 = (1) modulo (m})

C2 = bamim3 = (1) modulo (m))
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C3 = b3mim3 = (1) modulo (m3)

where b} is the smallest positive integer which, when multiplied by mpm3 and divided by
mj, gives unity as a remainder (and similarly for the other b's). Once mi1, m2 and m3 are
chosen, the range, R¢, can be computed by using the C values and the ambiguous cell
numbers (A1,A2,A3) in which the target is detected. For example, the Chinese remainder
theorem says that, given a triplet whose elements' maxima are 3, 5, and 7, any number
between 1 and 105 can be uniquely specified by the triplet, {1,1,1} corresponding to 1 and
{3,5,7) corresponding to 105.

To summarize, resolving range ambiguities in a High PRF system requires more
than one coherent processing interval (CPI) in an antenna beam dwell with the attendant
time overhead associated with each CPL This time overhead is 50% of the available time in
the example radar. This is why it is impractical, unless the scan rate is reduced to increase
the dwell time, to have more than 3 CPT's in a beam dwell even though, theoretically, more
CPT's can lead to improved performance of the binary post detection integrator.

Lastly, detection performance improvement is unacceptable if the false alarm rate is
not kept below the minimum desired or tolerable level. Therefore, needless to say, the
specified false alarm rate must not be exceeded under any condition. According to the
preferred Neyman-Pearson strategy, the improvement should be in terms of maximizing the
probability of detection for a fixed value of a false alarm probability that maintains the
system false alarm rate at or below the allowed value.
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1.1.3 Performance Improvement Criteria

Performance of the radar using the proposed modifications is compared to that of its
present (baseline) configuration. A cumulative detection probability of 0.9 in a one minute
time span for Swerling case 1 targets in the entire surveillance volume is adopted as the
principal performance criterion under the constraint that the minimum false alarm time is 5
seconds. All suggested modifications are made within the system constraints specified in
Section 1.1.2, and the Gaussian assumption for the noise and signal plus noise is assumed
valid such that the receiver structure shown in Figure 1.1-2 is the optimum receiver which

maximizes detection probability.

The Gaussian assumption is certainly true for the Swerling and Marcum target
models in white Gaussian noise considered in this report = where target doppler
" frequencies fall in the clutter free doppler zone after target signals are separated from the
mainbeam clutter by their doppler frequencies and the mainbeam clutter is removed. This
is also true in the case where target doppler frequencies coincide with doppler frequencies
of sidelobe clutter. The reason for this is that the sidelobe clutter level in this radar is equal
to or less than the thermal noise due to the extremely low sidelobes of the antenna. Also
the sidelobe clutter is the sum of clutter returns from all ground patches whose doppler
frequency and range rings fall in the ambiguous radar range-doppler cell in question such
that the central limit theorem applies.

In the edge of the mainbeam clutter and in altitude-line clutter, the clutter signals can
be greater than thermal noise. Even here, experimental data shows that the marginal
probability density of clutter signals received through a coarse resolution radar is Gaussian
within the time and spatial limit bounded by a single range-azimuth resolution cell in a
beam dwell wherein a detection decision takes place. That is, even though the spatial
inhomogeneity of the terrain gives rise to non-Rayleigh density functions for the amplitude
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distribution of the clutter taken over a large surveillance area, the ;onditional density
function given the local mean of the clutter voltage retumning from many elemental clutter
cells contained in a radar range-azimuth resolution cell is Gaussian by the central limit
theorem. This random process, however, is characterized by nonzero mean and unequal
variances between the quadrature components, and with a high degree of pulse to pulse
correlation. This is believed to be because the sample is taken from a ground patch within a
clutter spatial correlation distance and within a temporal correlation time. This is the non-
stationary characterization of the clutter. More thoughts on this and some performance
comparisons of several filter designs intended to maximize output signal-to-clutter ratio are

presented in chapter 6.

Returning to the performance criterion, cumulative detection probability, Pc, is an
important performance measure of a surveillance radar. Its definition and its relationship to
the single scan bmbability of detection, otherwise known as the blip-scan ratio, will now
be discussed. Consider the surveillance volume centered about the radar.platform shown in
Figure 1.1-3. The outer boundary of the horizontal coverage is defined by the range
beyond which a single scan probability of detection, Py, is less than some minimum value.
Consider a radially approaching target with velocity V. Once the target has penetrated the
boundary of the surveillance volume, let AR and At represent the maximum range
penetration and the maximum time elapsed, respectively, before the target is detected by
the radar at least once. Obviously, AR and At are related by

AR = VRAL

In general, several scans (say L) occur while attempting to detect the target in the interval
AR. For analytic convenience, assume that AR is small compared to the range at which AR
is measured such that the single scan detection probability (Pq) within the time At can be
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for radially approaching target
with velocity Vr
AR = Vrot

Horizontal Coverage

Vertical Coverage

Figure 1.1-3 Surveillance Volume for an Airborne Radar
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assumed to be constant. With this assumption and the assumption of statistical

independence from scan to scan, P in time At is given by
Pc=1-(1-Pgt. (1.1-15)

In equation (1.1-15), P{ is the single scan probability of detecting the target. Thus,
(1 - Pq) represents the probability of a miss in any one scan and (1 - Pg)L is the probability
of failing to detect the target in all L scans. Hence, Eqn. (1.1-15) gives the probability of

making at least one detection in L scans.

On the surface, examination of Eqn. (1.1-15) indicates that P¢ can be increased by
using a larger value of L. However, for a specified At,

L =AYTF

where TF is the frame time allowed for searching out the entire surveillance volume. When
At is held fixed, the only way to increase L is to decrease TF. However, a reduction in TF
results in a shorter dwell time which, in turn, decreases NJ, the number of pulses to be
integrated. Consequently, Pc becomes smaller as L becomes larger. It follows that there

exists an optimum value for L in Eqn. (1.1-15).

A second consideration arises for fluctuating targets. It is shown in Section 3.3
that, as the signal-to-noise ratio increases, the detection probability for a fluctuating target
relative to that of a nonfluctuating target degrades as shown in Figures 3.3-1 and 3.3-9.
For a Swerling case 1 target, a crossover occurs when Pg = 0.32 in a single slant system or
if an average beam shape loss is assumed for all slants in a multi-slant system. Otherwise,

the crossover occurs at a point where P is slightly less than 0.32. For P less than this
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value, the fluctuating target has a higher detection probability than does a nonfluctuating
target. The situation is reversed for P greater than this value. Barton [4] states that the
optimum number of scans, L, for a Swerling case 1 target is around 6 for Pc of 0.9. It is
around 2 for P of 0.5 and around 10 for P¢ of 0.99. For the radar under consideration in
its baseline configuration, the specified minimum Pq is 0.32 and the maximum elapsed
time At is one minute. This gives 6 scans in At at a scan rate of 36 degrees per second and

Pcin At becomes
Pc=1-(1-032)6=09 (1.1-16)
This satisfies the optimum number for L of Barton.

If the range closure during the elapsed time At is not negligible, then, a different Pq
for each scan must be used to compute Pc. Let AR =LA where A is the range closure
during a single scan. MMng a constant radial velocity, the target in a particular azimuth
Girection appears in the same relative position within each increment A, as shown in Figure
1.1-4. Let p(Rm+r+iA) denote the single scan Pg at range Rm+r+iA. However, depending
on the azimuth direction, r can vary anywhere from Rm to Rm+A. Assuming ris a random
variable uniformly distributed over the interval A, the mean cumulative detection
probability, P(Rm, A) is given by

Rata L-1
P(Rm,A)=-li-f {I-H[l-p(Rm+r+iA)]}dr.
Raa

i=0
(1.1-17)

The integral in Eqn. (1.1-17) performs an averaging which takes into account the fact that
the target could be anywhere in the interval [iA, (i+1)A] with equal likelihood when




intercepted by the radar beam. Analyses based on this approach which allow determination
of the optimum value of frame time is given in Sections 5.1 and 5.2. Unless otherwise

specified, the definition for P¢ given by Eqn. (1.1-15) will be used in this investigation.
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Figure 1.1-4. Detection Scenario of an Approaching Target with a Constant Radial Velocity

The relationship between Pq and P has been established when P{ is independent
from scan to scan. As will be shown in Section 4.4, this assumpﬁon is not valid when
scan-to-scan processing (SSP) is used. Therefore, for SSP, P¢ cannot be computed by
simply using Eqn. (1.1-15). The computation of P for SSP is developed in Chapter 4
which is entirely devoted to SSP.

Another term often used in radar detection is the blip-scan ratio (BSR). This is the
ratio of the number of scans, J, within each of which a given target is detected to the total
number of elapsed scans, L. For L large, the blip-scan ratio approximates the single scan
detection probability in accordance with the relative frequency interpretation of probability
[5]. Note that the average number of hits in L scans can be approximated by the product
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{(BSR]L. This is also equal to the number of track updates in a time interval equal toL

scans.

The track update rate at the minimum critical range is another performance criterion.
This is the range at which the single scan detection probability is high such that the track
update rate approaches the antenna scan rate. By definition, the track update rate is the ratio
of Pq to TF. The track update interval is the reciprocal of the track update rate. For
successful target tracking, a minimum track update rate must be maintained at the minimum
critical range. This must be kept in mind when adjusting scan rate so as to improve
cumulative detection performance. Scan rate optimization is discussed in Chapter 5 where
it is shown that the cumulative detection probability can be increased by slbwing the scan

rate. However, the track update requirement places a lower limit on scan rate.

12 Dissertation Outline

The description of the radar for which performance improvement is sought was
presented in Section 1.1.1. Chapter 2 contains a discussion of various considerations
needed for comparison of the baseline and modified radars. These include such issues as
the number of coherent processing intervals in a beam dwell, the number of available
pulses in a coherent processing interval, beam shape loss, false alarm probability
allocation, and target models. It is shown how two different approaches to false alarm
calculations, as proposed in the radar literature, can be used to relate cell false alarms to
system false alarms.

Performance analysis of the baseline radar is presented in Chapter 3. This forms
the basis for comparing performance improvements of the modified configurations. Itis
desired to extend the range at which the specified cumulative detection probability is
achieved without changing the radar's power-aperture product and operating frequency.
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Scan-to-scan processing has been pursued by others as a ﬁromising technique for
obtaining performance improvement. However, a detailed analysis to support this claim is
not available in the literature. In Chapter 4, a careful analysis is performed and numerical
results are generated for two versions of the scan-to-scan processing concept. It is shown
that only marginal improvement can be attributed to scan-to-scan processing. One
significant conclusion is that it is difficult to overcome the power-aperture product

limitation with increased signal processing.

In an effort to dvercome the limitations encountered, an alternate approach is
explored in Chapter 5. This involves scan rate reduction and non-coherent integration in
place of the M of N post detection integration. Trade-offs involved with reducing the search
sector are also examined because the power-aperture product constraint leaves very few
options. A detailed analysis reveals potential improvements over the range from 3 to 10dB
in the equivalent signal-to-noise ratio gain. The near 10 dB impro;rement occurs with
reduction of the search sector by a factor of two, slowing down the scan rate by the same
factor coupled with a non-coherent integration in lieu of the binary post detection
integration, and modifying the performance requirement that Pc=0.9 in a 1 minute
surveillance interval to the requirement that there be on the average one track update in a 10
second interval. The improvement, strictly according to the original performance criterion,
can be as high as 5 dB. This requires noncoherent integration with slant-to-slant frequency

agility. All these figures are for Swerling case 1 targets.

A summary of results developed in this dissertation is presented in Chapter 6. The
work is focused on improving detection of targets embedded in white Gaussian noise. In
addition, some thoughts on clutter statistics and their implication on receiver structure are

given. Quantitative comparisons of relative performances of different classes of clutter
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cancellers using actual high PRF radar data as test inputs are also included. Finally,

suggestions for additional work are included.
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CHAPTER 2
SOME CONSIDERATIONS IN PERFORMANCE COMPARISON OF

MODIFIED AND BASELINE RADAR CONFIGURATIONS

In this chapter various concepts needed for comparison of
the baseline radar configuration with proposed modifications
are discussed. After defining relevant radar terminology,
assumptions used in the analyses are presented. This is fol-
lowed by discussions of those parameters ﬁhich do not remain

constant as the configuration is changed from the baseline.

2.1 Definitions of Terms

To facilitate understanding of the discussions and
analyses presented in this investigation, frequently used
terminology which may not be familiar to the nonspecialist

is defined below:

Baseline Configuration:
The radar in its present form is referred to as the
baseline configuration to distinguish it from modified con-

figurations proposed for performance improvement.

Surveillance Volume (Q):

Surveillance volume is the volume of space to be searched
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for targets of. interest. The surveillance volume of this ra-
dar was shown in Figure 1.1-3. The azimuth coverage is 360
degrees. For range less than Ri' the vertical coverage is
bounded by the antenna elevation beamwidth while beyond R.,
the coverage is bounded by the surface of the earth and the
maximum altitude of interest. Both coverages are bounded in
range by the radar horizon and/or the maximum detection ca-

pability of the radar.

Search Frame Time (TF):

For the radar under consideration the vertical coverage

is illuminated by the single antenna beamwidth. Therefore,
the antenna scan is limited to the azimuthal dimension. The
search frame time is the time for the antenna fan beam to
sweep through the entire 360 degree azimuth sector. The ra-
dar under consideration is equipped with a mechanically ro-
tating antenna. The search frame time is more commonly re-
ferred to as a frame time or a scan time. For the radar in
the baseline configuration, <the scan time is 10 seconds.
Therefore, the scan rate is 36 degrees per second or 6

revolution per minute (rpm).

Beam Spot:

For a given antenna beam, the number of beam spots re-

quired to cover the entire surveillance volume determines
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the number of beam dwells in a scan and, therefore, the
dwell time that results for a specified frame time. In an
azimuth scan only radar, there are 360°/8B beam spots in a

o

360 sector where 6 is the one-way half-power azimuth

beamwidth.

Dwell Time:

For the radar under consideration the antenna is me-
chanically rotated in azimuth at a constant rate. The dwell
time is the time during a single scan that a point target in
a fixed azimuth direction is within the one-way half-power

‘beamwidth.

Pulse Repetition Frequency (PRF):

The pulse repetition frequency is the frequency of the
periodic transmitted pulse train. When several different
PRF's are used in order to resolve range ambiguities, the
number of pulses transmitted in a given time, assuming con-
tinuous transmission at an average PRF, is used to measure
time intervals of interest, e.g., dwell time, for conve-

nience.

Coherent Processing Interval (CPI):
CPI is the time interval spanning the number of pulses

used for coherent integration (i.e., number of FFT samples).
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The duration of the CPI is measured in terms of the average
pulse repetition frequency (PRF). CPI's in a dwell time are
not contiguous. They are interleaved with intervals for time

overhead.

Time Overhead (TH):

Time overhead is the portion of the time in a modulation
period that is not a part of the coherent processing inter-.
val. This includes the round trip transit time of the trans-
mitted pulse with respect to the maximum range clutter patch
and/or a target, certain house keeping overhead such as tim-
ing and control necessary to setup the CPI, and clutter can-
celler transient response settling time during which signal
integration is prevented. 1In the baseline configuration,

this time overhead exceeds 50% of the modulation periocd.

Modulation Period (T}Q:

A frame time or a scan time consists of a contiguous
train of modulation periods. A modulation period consists
of the coherent processing interval (CPI) plus the total
amount of time overhead associated with the CPI. The modula-
tion period is depicted in Figure 2.1-1. The actual received
pulses at the analog~to~digital converter output are shown
in Figure 2.1-2 for range gates 33 through 36 where the in-

teractions between first, second and multiple time around
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echoes are clearly illustrated at the beginning of the pulse
train. These pulses are discarded from further processing.
This transient period lasts until returns from the clutter
patch at the maximum range begins td reach the receiver.
Figures 2.1-3 (a) and (b), respectively, show the output of’
the infinite impulse response (IIR) filter used for the
clutter canceller and the steady state portion of that
waveform processed through a 128 point FFT. Figures 2.1-3
(c) and (d), respectively, are the output of the finite im-
. pulse response (FIR) filter used as the clutter canceller
(2-stage delay line canceller) and that waveform processed
through a 256 point FFT. The absence of the transient re-
sponse at the output of this FIR clutter canceller is

evident and is what enables use of the longer FFT.

Slant:
A slant is synonymous with modulation period. A 2-slant
or 3-slant configuration refers to the configuration wherein

a dwell time is divided into the specified number of slants.

Integrated Signal-to-Noise Ratio (SNR or S/N):

As given in Egn. (1.1-10) the integrated signal-to-noise
ratio involves the average signal power over N; pulses.
Some authors use peak signal power over the N, pulses. Con-
sistent with DiFranco and Rubin [2] the symbol, ¥, will be

employed to denote the integrated signal-to-noise ratio when
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peak signal power is used. Note that R is twice SNR. Un-~
less otherwise specified, the SNR in Tables and Figures of
detection probability (Pd) will be the SNR associated with a
single CPI that would appear at the detector had all the
pulses in that CPI been received through the peak of the an-
tenna bean. Hence, the notation (SO/N) is introduced to
signify this. Wwhen this is in response to an average target
radar cross section (RCS), an overbar is placed above the
symbol, i.e., (§°/N). To take into account the beam shape,
the Pd is computed by subtracting from the listed (§°/N) the
corresponding beam shape loss in dB for each of the CPI
within a beam dwell in a given processing configuration.
This allows for comparison, on a common ground, of the dif-

ferent processing configurations which have different beam

shape losses.

Reference Range (quz

Reference range is the range at which the specified de-
tection performance is reached for a reference Swerling case
1 target in the baseline configuration. All other ranges are

normalized to this range.

Reference Signal-to-Noise Ratio (§6/ngz

Reference signal-to-noise ratio (reference SNR) is the

integrated signal-to-noise ratio received in a CPI from a
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reference target having a specified mean radar cross section
(RCS) when it is located at the reference range. All refer-
ence targets have the same specified mean RCS. When the ref-
erence target is a Swerling case 1 target, the reference SNR
results 1in a single scan detection probability of 0.32 in
the baseline configuration. Since the reference target is
defined only in terms of its mean RCS regardless of the tar-~
get model assumed, the reference SNR has the same value for
all target models in a given configuration but gives rise to
different values of probability of detection. For configura-
tions other than the baseline, the reference SNR is the SNR
obtained in a CPI in each configuration from the reference
target located at the reference range. Therefore, the value
of the reference SNR is different for a different con-

figuration and thus reflects the change in the configura-

tion.

Single Scan Detection Probability (Pd):

By definition, single scan detection probability which is

measured after post detection integration, does not utilize
information from previous scans. Therefore, Py is assumed

to be independent from scan to scan.

Hybrid Single Scan Detection Probability (Pd(hyb)):

In contrast with single scan detection probability, the




hybrid single scan detection probability which arises in ssp
uses the past scan detection history. Therefore, it is not

independent from scan to scan.

Blip Scan Ratio (BSR):

Blip scan ratio is the number of scans, J, where a hit is
scored from a given target divided by the total number of
scans, K, elapsed. This approaches the single scan detection
probability when K is large assuming that Pd remains con-

stant.

Cumulative Detection Probability (P.):

Cumulative detection probability and its relationship to
single scan detection probability (Pq) are defined in
section 1.1.3 under performance improvement criteria. Unless
otherwise specified, cumulative detection probability over a
fixed time interval is defined assuming that single scan de-
tection probability is constant over that interval. This, in
turn, assumes that the target range closure during the in-
terval is negligible. Thus, in the absence of a scan-to-scan
processing (SSP), Pc is given by the relationship,
Pc=l-(1-Pd)L, where L is the number of antenna scans in that
time interval and Pd is assumed to be independent from scan

to scan. The computation of P, under SSP is complex. This is

derived 1in chapter 4 where SSP is discussed. Unless
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otherwise specified, the time interval is taken as one

minute or L is 6 scans at 6 a rpm antenna rotation rate.

2.2 Basic Assumptions

Basic assumptions under which the results of this inves-

tigation are based are presented in this Section.

1. The probability density of signal and signal plus noise
voltages after removal of the mainbeam clutter is
Gaussian. The noise voltages which may consist of the
thermal noise and residue mainbeam clutter plus sidelobe
clutter are white Gaussian with zero mean and equal vari-

ance between their quadrature components.

2. The antenna and the receiver together, including
analog-to~ digital converter and FFT before the detector,
is linear.

3. The target model of interest belongs to one of the five
Swerling and Marcum cases. In particular, the priority

target is Swerling case 1.

When assumption 1 does not hold, particularly with respect
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to the total noise remaining after the mainbeam clutter can-
cellation, the receiver structure shown in Figure 1.1-1 is
not optimum for maximizing the detection probability. Avail-

able test data shows, however, that the stated assumption

is reasonable.
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2.3 Number of CPI's in a Beam Dwell and Number of Available

Pulses in a CPI

As introduced in section 2.1 under éefinition of terms,
the frame time of a radar whose antenna is scanning the sur-
veillance sector at a constant rate is made up of contiguous
modulation periods. The length of a modulation period is
chosen such that there can be at least 3 modulation periods
in a beam dwell in order to allow use of different PRF's to
resolve the range and/or velocity ambiguities of targets.
Associated with each modulation period, there is a fixed
time overhead. For the baseline configuration, this is over
50% of the total modulation period. In general, for a
specified beam dwell, this limits the maximum number of
modulation periods in the beam dwell to 3. (For other ra-
dars, in which a smaller time overhead is possible primarily
because of shorter round trip transit time for surveillance
over short ranges, more modulation periods can be imple-
mented for greater effectiveness in binary post detection

integration.)

Given a system which is power limited (i.e., a transmit-~
ter which is already operating at the limit of its peak
power, average power, and duty factor), the most effective

operation uses the widest pulse width at its peak power con-
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sistent with resolution requirements, and the maximum PRF
for which the average power and duty ®factor are not ex-
ceeded. This, in essence, sets the maximum PRF as well.
Thus, the available energy in a beam dwell is fixed for a
given scan rate and pulse repetition frequency. However,
usable energy is determined by the number of modulation pe-
riods chosen and the fixed time overhead associated with
each modulation period. The relative figures based on these
numbers are established here for the baseline and modified

configurations for convenient reference.

In practice, different pulse repetition intervals (PRI's)
are used in the modulation periods which reside in a bean
dwell. In this investigation, felative time intervals are
measured using the average PRI. For example, consider a
3-slant configuration in which the PRI's are 0.9, 1.0 and
1.1 milliseconds. (These are fictitious numbers.) Conse-
quently, a time interval of 1 second will be said to have a
duration of 1000 PRI's using the average PRI. Analogously,
since there is one pulse per PRI, time can be measured in

terms of the number of pulses. A dwell time is defined as
dwell time = (half power beamwidth)/(scan rate).

Let PRI and PRF denote the average pulse repetition interval

and average pulse repetition frequency, respectively. Of
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course, PRF is the reciprocal of PRI. A dwell time is given

in terms of a number of PRI's by

dwell time (in PRI's) = (dwell time)/PRI

= (dwell time)xPRF.
For a particular radar design, the number of modulation pe-
riods processed as a group will occupy a specified fraction
of the beamwidth. (This fraction typically varies between
0.8 and a number slightly higher than unity.) Thus, an av-

erage modulation period measured in PRI's is given by

modulation period (in PRI's) = (dwell time)x(fractional
beam width used)xPRF / (number of modulation periods).
In practice, [(dwell time)x(fractional beamwidth used)] is

also referred to as dwell time for convenience.

A coherent processing interval (CPI) available in a
modulation period is the time remaining after a fixed time
overhead is subtracted from a given modulation period. Two
different time overheads are considered in the performance
analysis: One is the normal time overhead (also referred to
as the maximum time overhead), and the other is a reduced
time overhead. The latter is based on the assumption that
under some operating conditions, where there is no clutter
beyond the radar horizon, the waiting period for the mul-

tiple time around echo from the farthest clutter patch can
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be reduced. Another factor influencing time overhead is the
transient settling time of the clutter canceller. It appears
possible to reduce time overhead by incorporating a cancel-
ler having a shorter settling time. The expected savings
arising from the two factors are incorporated into the re-
duced time overhead. The relative figure proportional to the
number of pulses available for integration, along with re-
lated parameters, are listed in Table 2.3-1 for a radar
employing a mechanically rotating antenna with a 6 rpm scan

rate.

It is assumed that Ny number PRI's occur within the an-
tenna half-power beamwidth. Because 103.6% of the beamwidth
is utilized, the total number of PRI's in a beam dwell is
1.06NB. Consequently, there are 1'036NB/3 = Nm3 number of
pulses in a modulation period for a 3-slant configuration
and 1.036Ng/2 = N, number of pulses for a 2-slant con-
figuration. Because of the large time overhead, the number
of useful pulses in a CPI is significantly smaller than the
total number of pulses in a modulation period. The reference
number of pulses per CPI is equal to (reference NI). The
relative inteéiation gain per CPI for the various configura-

tions is defined to be

# of pulses in a CPI
(reference Ny)

relative integration gain
CPI

(dB) = 10 log,,
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Table 2.3-1

Number of Pulses Available for Integration with
a 6 rpm Antenna Scan Rate

Configuration
Time overhead

No. of pulses in

3-dB beam width NB

% beam width

3-slant

normal reduced

2-slant

normal reduced

N N N

B B B
103.6 103.6 103.6
3 2 2

Nm3 Nmz Nmz
.348Nm3 .347Nm2 .232Nm2
.652Nm3 .653Nm2 .768Nm2

1.33

1.33

utilized for PDI* 103.6
No. of mod. periods
per beam dwell 3
No. of pulses in a
mod. period (MP) *+* N
m3
time overhead .521Nm3
CPI .479Nm3
Relative
integration
gain/CPI (dB) Ref
Relative
gain in total
energy/dwell (dB) Ref
Baseline

Modified Configurations

* PDI = post detection integration

*k Nmi = (NB)(% beamwidth utilized)/ (i)
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The reference number of pulses per beam dwell is 3x(refer-

ence N Hence, the relative gain in total energy per

I)'
beam dwell is given by

relative gain in total energy dB 10 1 (# of pulses in a CPI)(# slants)
beam dwell (dB) = 10 log,, 3x(reference Nj) .

The relative integration gain/CPI is a misleading figure
of merit because the larger gain for a 2-slant configuration
is offset by the fact that there is one less CPI than for
the 3-slant configuration. Both of these factors determine
performance of the M of N binary post detection integrator.
As a result, the relative gain in total energy/beam dwell is
a figure of merit which more closely reflects system perfor-

mance.

2.4 Bean Shape Loss

Broadly speaking, beam shape loss takes into account the
variable antenna gain experienced by the transmitted and re-
ceived pulses as the antenna scans by a point target during
a CPI. Blake [7] has shown that a minimum two way, single
dimensional beam shape loss of 1.6 dB should be used to ac-
count for the actual beam shape as compared to the constant

gain over the half power beam width typically used. His
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analysis assumes that a large number of pulses are centered
around the peak of the beam over an optimum fraction of the
beamwidth. For pulses positioned outside the 84 % beamwidth,
he shows that integration results in loss of signal-to-noise
ratio because more noise is added than signal beyond this
optimum width. His analysis applies to a detection of a weak
signal with a square-law detector followed by a post detec-

tion integrator.

Since finding an appropriate average beam shape loss de-
pends on the percent of beamwidth utilized and the par-
ticular detection processing used, a more accurate method is
to compute the actual loss per CPI. Let the two-way antenna

power pattern be approximated by the Gaussian expression,

G(f) = exp(-5.55 #/63) .

Assuming a train of pulses at a constant PRF, 1let Ng denote
the number of pulses that would be received in a beamwidth.
If the pulses are centered about the peak of the beam and
6 denotes the angular position of the kth pulse, it follows

that

0
kK (2.4-1)
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Let N. be the number of pulses actually integrated. For the

I
idealized situation in which the beam pattern has a constant

gain of unity, the total received power would be N. times

I
the power in a single pulse. Assuming the N, pulses to be

centered on the beam where N. is an odd integer, the normal-

I
ized total power received is

(Np-1)/2
1+2 % exn(-5.55 IE/N3) |

The beam shape loss, L is defined to be the ratio of

BS’
these two powers, expressed in dB. Hence, as found in

Skolnik [9], the beam shape loss is given by
N;

Np-1)/2
1+2 kz_jl exp(-5.55 I2/N3)

For example, if there are 11 pulses to be integrated, all
lying uniformly between the half-power beamwidth, the beam

shape loss is 1.96 dB.

In the radar under consideration the set of modulation
periods (e.g., 3 in 3-slant configuration) nearest the beam
center is selected as a group, at a one slant increment on a
sliding window basis, for post detection integration. The
set nearest the beam center will result in the highest
signal-to~noise ratio. Therefore, this particular set is the

one for which the beam shape loss needs to be determined.
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Since the antenna is continually scanning, the set can be
positibned anywhere with respect to the beam center with
equal likelihood from the most favorable position (centered)
to the least favorable position which is one-half modulation
period offset left and right from the centered position. For
an offset larger than this, the next set will result in a
higher signal~to-noise ratio. Therefore, the correct beamnm
shape loss for each CPI in a set is the beam shape loss for
the CPI computed per Eqn. (2.4-2) adjusted for offset from
the beam center. 1In addition, to account for the random po-
sition of the CPI, the beam shape loss should be averaged
over all possible positions of the CPI extending from
one-half modulation period offset to the left and right. The
centered and extreme offset positions for 2=-slant and

3-slant configurations are shown in Figure 2.4-1.

Analogus to Egqn. (2.4-1), it is convenient to measure an
angular offset in terms of the number of pulses that would
span the offset or length. In this sense, the following no-
tation is introduced (see Figure 2.4-1):

Nc : offset of a CPI measured from the beam centerline
to the center of the CPI when the set of modula-

tion periods is centered on the beam centerline

N : offset of a CPI measured from the beam centerline
to the leading edge of the CPI

N ¢ lencth of the CPI
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N

mod ° length of modulation period,

For a CPl offset by NL' the conditional beam shape loss of the
CPI is

N

Laging, = 10 log,g | Wi

2
= . exp(-5.55K*/N3)

To average over the random position of the CPI, let N, be
uniformly distributed over the modulation period. It follows
that the beam shape loss, averaged over all possible posi-

tions of the CPI, is given by

] Ny §0Nog- NN N;
Lpg = 10 log,, B X z NpRg-a
Np=-3(Nmoa+ N+ N, k==2NL exp(-5.55K’/ Ng)

(2.4-3)
In the remainder of the investigation the term, beam shape

loss, refers to the loss evaluated using Eqn. (2.4-3).

Using this method, the beam shape loss for each CPI in
various 2-slant and 3-slant configurations are computed. The
results are summarized in Table 2.4~1. Because of symmetry
in the 2-slant configuration, the beam shape loss for both
CPI's are equal. For the 3-slant configuration the loss for
the center CPI is significantly less than those for the two
outer CPI's. The losses with reduced time overhead are

about the same as those for normal time overhead. Almost
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without exception, the industry computes performance
analysis using the 1.6 dB beam shape loss originally pro-
posed by Blake [7]. When several slants are involved, the
1.6 dB loss is treated as thbugh it applies to each of the
individual CPI's. 1In Table 2.4-1, average beam shape losses
are tabulated which are obtained by averaging the actual
losses for each CPI. The increase in loss cver the 1.6 dB
figure is due to both the larger percentage of beam utiliza-
tion and the averaging over the random positioning of the
CPI's. In the analysis of the baseline configuration, the
effect of beam shape loss on the detection probability is
discussed. It will be shown that use of an average beam
shape 1loss in place of the losses for individual CPI's
leads to an optimistic prediction of performance. As a fi-
nal point, it is noted that the use of additional slants can
be achieved by processing CPI's positioned outside the
half-power beamwidth. The beam shape loss for those CPI's
increases dramatically. For example, if 5 slants in a
3-slant configuration are processed, the peam shape loss for
the two outer CPI's in the 5-slant set is 7.28 dB. There-
fore, use of Blake's 1.6 dB figure for those CPI's would re-

sult in large errors.
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Table 2.4-1 Summary of Beam Shape Loss for the 2-Slant
and 3-Slant configurations

normal
time
overhead

reduced
time
overhead

2-slants per beamwidth
beam shape loss (dB)

CP1 CPI2 (2-CPI)

1l ave.

3-slants per beamwidth
beam shape loss (dB)

CPI, CPI CPI3 (3~CPI)

1 2

ave,

2.55 2,55 2.55

2.52 2.52 2.52
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2.5 False Alarm Probability Allocation and System False

Alarm Verification

A system false alarm occurs when the target report gen-
erator following the post detection integrator erroneously
declares the presence of a target. On the other hand, a
cell false alarm before post detection integration results
when the test statistic for that cell exceeds the threshold
in the absence of a target. The allocation of a cell false
alarm probability such that the probability of system false
alarm remains below an acceptable level during actual radar
operation is a complicated procedure for modern pulse
doppler radars having range and/or velocity ambiguities
which are resolved by post detection integration of multiple
observation samples. A specification of cell false alarm
probability, which is frequently done in practice, does not
lead to a specific system level false alarm performance un-
less the underlying detection process is also specified.
Two competing processing schemes should not be compared us-
ing the same cell false alarm probability because they would

in general lead to different system false alarm performance.

Marcum (see Nathanson [10]) did the first work in false

alarm calculation. Let Pf denote the false alarm probability
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each time there is an opportunity. On the average, assunme
there are n' independent false alarm opportunities in a time

T' Let Po denote the probability of no false alarm in n'

fa’
false alarm opportunities. Then, P, is given by

Py =(1-P)" . (2.5-1)
If o denotes the average number of independent false
alarm opportunities per second, then, n' is given by
n = al,, .
Egn. (2.5-1) can then be written as
dn'
Py =(1-P) 2. (2.5-2)

Given values for P,, P;, and a, Marcum defined the false alarm time to be

that value of Tg, such that Eqn. (2.5-2) is satisfied.

For large n', Egn. (2.5-1) can be approximated by

-n' P
~ f
Py e .

It then follows that

56




4 (2.5-3)

v
1§
8-
Sy

g

Marcum selected a value of 0.5 for Po’ With this choice,
the probability of having no false alarm is also equal to
the probability of having one or more false alarms. Conse~

quently, a complementary equation to Egn. (2.5-1) is

0.5=1-(-P)*. (2.5-4)

Substituting P, = 0.5 into Eqn. (2.5-3) gives

~=F = a:l',', . (2.5-5)

An alternate approach was proposed by Barton [4] and
Skolnik [9]. Let n, be the number of false alarms in time

t. They defined the average false alarm time, Tfa' as
Tg, = lim ‘ri : (2.5-6)

As before, 1let denote the average number of independent
false alarm opportunities per second. Then, the average
number of false alarm opportunities in time t is egqual to

t. From the relative frequency definition of probability,
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the false alarm probability is given by

L S PTONG. Y
Pr = fim ot =afimy - (237

From Egn. (2.5-6), it follows that

1
R (2.5-8)

Equating Egqns. (2.5-5) and (2.5-8), it is seen that
Tf, = 0.69 T, . (2.5-9)

provided P, = 0.5 and n' is large.

Now a method for deriving a cell false alarm probability
before post detection integration from a specified systenm
false alarm rate requirement is developed. This is done
first by using Marcum's definition for the 3 of 3 post de-
tection integration in the baseline configuration of the ra-
dar under examination. A method for general M of N post de-
tection integration is then derived using the Barton and
Skolnik approach but suitably modified to take into account
the effect of binary post detection integration, time utili-
zation, range eclipsing, velocity blanking, and

range/velocity unfolding. Finally, this is specialized for
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the 3 of 3 processing to show that the two methods give re-

sults having the same order of magnitude.

In 3 of 3 post detection integration using a sliding win-
dow, a target is declared after each modulation period if
and only if there is a detection in each of 3 consecutive
modulation periods. Let P, denote the probability of one or
more false alarms occurring in each modulation period after
the 3 of 3 post detection integration for the entire set of
range-doppler cells after range and velocity unfolding. As-
sume there are n'm decisions made by the target report gen-
erator in a false alarm time T'eae Following Marcum's
definition, 1let the probability equal one-half that one or
more false alarms will occur in n'm opportunities. As in

Egn. (2.5-4), it follows that

0.5=1-(1-Py'm, (2.5-10)

With reference to Egqn. (2.5-6), let t represent the frame
time, TF’ and n, denote the number of false alarms allowed
in one frame time. For the baseline radar, t = 10 seconds

and n, = 2. Hence, the false alarm time is obtained as
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Tea s_le = 5 seconds.

From Egn. (2.5-9), Marcum's false alarm time is

T'¢a = (0.69)(5) = 3.45 seconds.

Even though the post detection integrator requires 3
modulation periods to make a decision, a sliding window is
used such that decisions are made every modulation period
for each range~doppler cell. Hence, the number of indepen-
dent false alarm opportunities per second, ¢¢, equals the re-
ciprocal of Tm’ the time duration for a modulation period.

This results in

0’ = aTy, -—3;1;4;5‘ .

Let ne be the number of doppler filter cells used to de-
tect targets having specific doppler shifts irrespective of
range. Also, before post detection binary integration, 1let
Pis denote the probability of having one or more false
alarms for each doppler filter arising in the ith modulation
period where i1 = 1, 2, 3. Finally, 1let Pr be the probabil-
ity that the resolved range falls within the target report

range. The probability Pf3 of generating one or more false
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alarms in a particular doppler filter after 3 of 3 post de-

tection integration is then given by

r

With respect to any 3 consecutive modulation periods, one
or more false alarms result if one or more false alarms oc-
cur in one or more of the ne doppler filters. As a conse-
quence, the probability of one or more false alarms in a
modulation period after post detection integration for the

entire set of range-doppler cells involved is given by

Py =1 - (1 - Py (2.5-12)

Let the average number of uneclipsed range gates in a PRI
be denoted by n,.. To allow for variability in the doppler
shift due either to target motion, system instability, or
noise perturbations, the threshold crossing in the (i-~1l)th
modulation period for a doppler cell centered at frequency
fj is correlated in the ith modulation period with threshold
crossings from doppler cells positioned within the frequency

interval, (fj - wfi/z, fj + wfi/z) where the doppler filter
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width is taken as unity and Wey is a multiplicative constant
greater than unity. Let P denote the single cell false
alarm probability before post detection integration of a
particular range-doppler cell. The pif's in Eqn. (2.5-11)

for i = 1, 2, 3, are then given by

Py =1 - (1-p) (2.5-13)
Py = 1 - (1 - p)"r 12 (2.5-14)
Py = 1 - (1 - p)"r"es (2.5-15)

Substitution of Eqn. (2.5-11) for Pf3 and Eqgns, (2.5-13)

through (2.5-15) for pif's into Egn. (2.5-12) yields
Py = 1{ 1-{1-(1-p) ¥ L1-(1-p) " 21-(1-p) " 13) P} . (2.5-16)

Egn. (2.5-16) can be simplified by use of the approximation,

(l-x)“ ~ l-kx , for x<<l .

Noting that the false alarm probabilities Pey and p. are
much less than unity, it follows that

Py = n; n} Wy, Wy P p} (2.5-17)
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Since P3 is much less than unity as well, Egn. (2.5-10)

also simplifies to
0.5 = n'm PS

from which P3 is obtained as

Py= 32 (2.5-18)

v}

Substitution of P3 from Eqn. (2.5-18) into Egn. (2.5-17)

and solving for P yields

1 0.5 s :
_pf= nr[ n'm nf w;z qu,] . (2.5 19)

Egqn. (2.5-19) is the desired result. Given the system false
alarm specification, false alarm time is readily determined
from which the number of opportunities in terms of number of
modulation periods in that false alarm time can be deter-
mined. With n'_so determined from the system false alarm

m

specification and given the system parameters, n., Ng Weo,
Wf3, and Pr, the cell false alarm probability, Pgr is

readily determined.

An alternate expression for the single cell false alarm

probability Pe before M of N post detection integration is
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now developed. The single cell false alarm probability af-

. ter M of N post detection integration is related to Pe by

¥N_N N-i
Pra = X TNy P (1P : (2.5-20)

The development begins by assuming a simple, continuously
operating radar where a decision is made for each range gate
sample. The resulting expression for Pey: obtained from
Egqn. (2.5-8), is then modified to take into account the mode
of operation of a more complicated pulse doppler radar. This
enables introduction of system factors which are useful in
radar design. The resulting expression for Ps from these
system paranmeters is shown to be consistent with Egn.

(2.5-19) which was developed using Marcum's approach.

Consider a radar operating continuously at a constant PRF

where a decision is made for each range gate sample. Let

~
=3
where the radar pulse has width 7 and bandwidth B. The number of range

gates in a false alarm time T,, is given by

§y
_g - BT{; .

The range gates and pulse repetition intervals within the

false alarm time are illustrated in Figure 2.5-1la. Note
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(a) range gates and PRI's in a false alarm time, Tta, in a
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Figure 2.5-1 Process by which False Alarms Occ ur
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that the average number of false alarm opportunities per

second is

Consequently, Egn. (2.5-8) becomes

P, =5 (2.5-21)

fa

where the denominator equals the number of false alarm op-
portunities in a false alarm time.

Next, consider a pulse doppler radar where N. samples for

I
each range gate are processed through an FFT. Note that

consecutive samples are separated by a PRI. Corresponding to
the NI DFT coefficients, NI doppler filters are created for
each range gate. Thus, the number of false alarm opportuni-
ties after the FFT operation remains the same as before. The
total number of range gate samples before the FFT operation
is transformed into an equal number of range gate-doppler

filter cells. These are illustrated in Figure 2.5-1b for

one modulation period.




In M of N binary integration the FFT samples from N con-
secutive modulation periods are jointly examined for M or
more coincidence detections for each of the range-doppler
cells. When decisions are made for every N nonoverlapping
modulation periods, the number of false alarm opportunities
in a false alarm time is reduced by this factor. As a re-

sult, Egn. (2.5-21) is modified to read

P, = . (2.5-22)

In addition, for a modern pulse doppler radar, the number
of false alarm opportunities in a false alarm time must be
modified to take into account time overhead, range eclips-
ing, and doppler filter blanking. The amount of time utili-
zation, range gate utilization, and doppler cell utilization
are illustrated in Figure 2.5-lc. Furthermore, the
multiplier effect of range and velocity ambiguity resolu-
tion, and the coincidence detection on a sliding window ba-

sis must be included. These factors are considered below.

Time Utilization Factor, Kl:

As explained in Section 2.1, because of time overhead, only

a porti~: of the modulation period generates range gate
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samples which are used for signal integration. The time uti-

lization factor, denoted by K is the fraction of a modula-

ll
tion period actually used for an FFT. It is given by

(N)(T,)
K, =—p—+

m

where Tm and Tr are the time duration of a modulation period
and the average time duration of a pulse repetition inter-

val, respectively. Thus, N T& is the average time duration

I
of a CPI.

Range Gate Utilization Factor, Kaf

In practice, to protect against burnout, the receiver is

shut down during pﬁlse transmission and shortly thereafter.
Therefore, a few range cells at the beginning of each PRI
are eclipsed and do not enter into further processing. Let

K, be the fraction of range cells which are not eclipsed.

Denoting the total number of range cells in a PRI as NG, the

number of eclipsed range cells as r and the average number

B'

of uneclipsed range cells as n., K, is given as

2

NG‘rB nr
K. =g =TG-

Velocity Ambiguity Factor, Kj:

To avoid velocity ambiguities the PRF should be greater

68




than or equal to twice the doppler frequency corresponding
to the maximum possible target radial velocity. The radar
under examination, due to design considerations, uses a PRF
only half as large. Consequently, there is an ambiguity as
to whether an observed doppler frequency corresponds to an
opening or closing velocity. Use of different PRF's enables
resolution of this ambiguity. Hence, the number of resolv-
able doppler frequencies is actually ZNI. To account for

this effect, the multiplier

is introduced.

Doppler Filter Utilization Factor, Ks:

A number of doppler filter cells 1located around the
mainbeam clutter doppler center frequency contain residue of
returns from mainbeam clutter and undesirable slow moving
ground targets. Therefore, these filters are blanked to pre-

vent detection resulting from these undesirable targets and

clutter. The fraction of unblanked doppler filters, K, is
given by
ng/2
RS
I
where ne is the total number of unblanked doppler filters
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after doppler filter unfolding and NI, the dimension of the
FFT, is the number of filter cells before correcting for the
velocity ambiguity factor, K,.
Range Correlation Factor for Range Ambiguity Resolution, KS:
The concept of resolving range ambiguity arising from a

high PRF waveform was introduced in Section 1.1.1. A set of
M slants with distinct PRF's, each having m, number of range
cells in the respective PRI, is used in a beam dwell. The
Chinese remainder theorem allows the resolution of the range
ambiguity when the specific ambiguous range cell number in
each slant is correlated over M slants. The Chinese remain-
der theorem requires that the mi's are relatively prime num-
bers. The range ambiguity resolution process is referred to

as range unfolding and is illustrated in Figure 2.5-1d.

The unambiguously resolved maximum range span, R nea-

cM’
sured in a range cell unit is

M
Ry = mymy--my, = i!__ll m, .

Recall that NG denotes the number of range cells in a PRI.

follows that

- mlﬂn2+—~+mM —._l M
NG = T L (B )
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Under the condition,

the mi's are approximately equal. RcM can then be ap-

proximated by

Ry = (NG)M = (rB+nl,)M

where n, is the number of uneclipsed range cells in a PRI.
These n. number of range cells in a particular doppler fil-
ter are correlated with n, number of range cells in the cor-
responding doppler filter in the other M-1 slants. As ex-
plained before, the doppler filter width for the ith slant
for correlation with the (i-1l)th slant is widened by a fac-
tor, W,. Thus, the number of possible M-tuples in M slants
for correlation for a particular filter is

M
(my-rg)(my-1g) Wpp---(my-rg) Wepg =}t 1L Wy |

Since there are ne number of doppler filters the number of

possible M-tuples in M slants for all filters becomes

M
M
n, n _I_IZWI.

This process is shown in Figure 2.5-le.
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In particular, m, and M are chosen so that RcM is much
larger than RcT’ the maximum reported target range, measured
in a range cell unit. Because detections in unambiguous
range cells beyond RcT are not reported, false alarm oppor-
tunities corresponding to these cells should be excluded
from the total count. Assuming the false reports after
correlation of M-slants occur with equal probability in any
unfolded range cell, the false alarm opportunities are ef-
fectively reduced by the factor equal to the probability P.
that the false reports fall within the reported range:

RcT RcT

P = =—
M (nrHB)M

r

Let Ks be defined as the ratio of the number of false

alarm opportunities due to range unfolding to that where
there is no range unfolding. Since there are exactly (nfnr)

opportunities without range unfolding, Ks is given by

M M
ne o I Wy 2 5.93
K¢ =_—ﬂr__ P, . (2.5-23)

Sliding Window Factor,gEQ:

The factor of N was introduced in Eqn. (2.5-22) on the

assumption that a decision is made once every N

nonoverlapping modulation periods. When a sliding window is
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used, a decision is made once every modulation period by

utilizing the previous (N-1) modulation pericds aleng with
the current modulation period as shown in Figure 2.5-1f.
Consequently, the number of false alarm opportunities in-
creases by a factor of N. To account for this effect, the
multiplier

1, no sliding window

K6=

N, with sliding window

is introduced.

Introduction of correction factors, Kl through KG' asso-
ciated with practical radars into Egn. (2.5-22) represent-

ing an ideal radar results in

N 6 -1
P,. “B’T,‘,[ I I(i] _ (2.5-24)

It is now shown that Egn. (2.5-24) leads to an expression
for the single cell false alarm probability Pe which is con-
sistent with Eqn. (2.5-19). Recall that Egqn. (2.5-19) was
obtained on the basis of 3 of 3 post detection integration
using Marcum's metheod. Letting M=N=3 in Egn. (2.5-20), it

follows that

-
P{a—pf'
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Hence, Egqn. (2.5-24) can be rewritten as

=3 = N _
Pta = B¢ =BT, KK,KK KK, ° (2.5-25)

Substituting M=3 into Eqn. (2.5-23) gives K; as

3
K. = nn Wy, Weg p
5 = Drnf -

Therefore, the factors which enter into Egn. (2.5-25) are

N, T n, ng/2
N=3’ 1,.__%_'_“_!’ K2 =I_\I_G , K3=2, K4 Nx N
3
ne np Wy Wi
K; = l'n‘. n, P, K¢=
Hence, Egn. (2.5-25) is given by
h N,T : 2 S P
1 n ng/2y (0 npWeW
T () (76 )@ (57 ) Fmg ) o
- 1
NlTr

(BT,,) ("T; (‘NII‘J (xlrl )(nfngwfzwfspr)

With the sliding window, there is one false alarm opportunity

per modulation period. Thus, there are

1
B =T Tra
false alarm opportunities in a false alarm time. Substitu-

tion of

Tea=n, T, B = 1/7, and NG = T/7
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into Eqn. (2.5-27) gives

3 1
P; = (2.5-28)
£ n_nndW, WP,

or, equivalently,

e =T‘r[m] s (2.5-29)
Since

T;, = 0.69T,, .
it follows that

n, = 0.69n

Therefore, Egqn. (2.5~19) can be rewritten as

[l
Ir___ 0725 1/3
[ AW, WesP,
Note that Eqn. (2.5-30) and Egn. (2.5-29) are consistent in
the sense that they yield approximately the same values for

Pg- It can be concluded, therefore, that the two different

approaches by Marcum and Barton produce equivalent results.

For M of N post detection integration, substitution of




Egn. (2.5-20) into Egn. (2.5-24) yields

N .
- N! i g YN N :
s = E e P ()T = BT, TR KGKGKK, (2.5-31)

P

From a system designer's point of view, this equation is
convenient for evaluating Pgs the cell false alarm probabil-
ity before M of N post detection integration. The results
obtained using Egqn. (2.5-31) are summarized in Table 2.5-1
for the 3 of 3 3~-slant baseline configuration, a 2 of 3
3-slant configuration, and a 2 of 2 2-slant configuration.
Relative to the 2 of 3 3-slant configuration, the value of
Pe is maintained the same as that determined for the
baseline configuration. This is equivalent to holding the
threshold fixed for both configurations. As a result, the 2
of 3 configuration is able to achieve more detections at the
expense of a higher false alarm rate. This is indicated by

the larger value for P a and the smaller value for T

£ fa“
With respect to the 2 of 2 configuration, the false alarm
time is maintained at the same value found for the 2 of 3
configuration. This allows comparison of detection perfor-
mance for the two configurations on the basis of having the
same false alarm performance. The comparison is presented

in Chapter 4 where it is wused in conjunction with

scan-to-scan processing.
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As a check, it is now shown that the numerical value de-
termined for p, for the baseline 3 of 3 post detection in-
tegration is consistent with the baseline system requirement
that there be on the average 2 false alarms per scan. Given

that pf=7.6xldﬂ it follows that

Pr, =5} = 4.39x107

a

The total number of false alarm opportunities per scan is

given by

T
ﬂgwfzwtsnfpi nm"ri )
_ ) 6173
= (42) (2.2)(2)(195{—45—, J(1040)
= 4.48x10° .

The average number of false alarms per scan equals the prod-

uct of P and the total number of false alarm opportunities

fa
per scan. This yields

(4.39x1071%)(4.48x10°) = 2

which is the expected result.
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Table 2.5-1 False Alarm Probability for the Processing
Options Evaluated

3-slant 2-slant

Mof N 3 of 3 20f 3 2 og-;- T
time normal reduced normal reduced normal reduced
overhead

FA/scan 2 2 4.15x10° 4.60x10° 4.15x10° 4.60x10°
50z MP's/ 1040 1040 1040 1040 6993 693
scan)
Tfa(s;;; 5 5 2.41x10732.17x107° 2.41x10 >2.17x10 >
B(MHz) 1.25 1.25  1.25 1.25 1.25 1.25

K, 0.479  0.652 0.479  0.652 0.653  0.768

K, 0.933  0.933 0.933  0.933 0.933  0.933

K, 2 2 2 2 2 2

K, 0.762  0.762 0.762  0.762 0.762  0.762

Kg 533 533 282 282 282 282

Kg 3 3 3 3 2 2
Prx102°  4.39x10° 3.23x10° 1.73x10% 1.42x20% 1.27x10% 1.20x%
pex10? 7.60x10° 6.86x10° 7.60x10° 6.86x10° 1.13x10% 1.09x10%
Notes:

1. For computing Ky the following parameters are used:

n =42, r =3, R_q=6173, Wg =2.2, Wg,=2.03.

T

2. Explanations for the numbers under columns labeled 2 of 3 and 2
of 2 with normal time overhead are given in Section 4.3. The
numbers with reduced time overhead can be found similarly. {
However, it should be noted that the number of range gate
samples no longer matches with the total number of
range-doppler cells. It is because zero filling 1is required
to generate FFT samples when the input time samples in a CPI
are not equal to integer powers of 2.
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2.6 Target Models Assumed

Before presenting the target models used in the analysis
of detection performance, the concept of target radar cross
section (RCS) is reviewed. Target RCS is related to the ra-
tio of received power from a target to the power incident
on the target. The received power is expressed in terms of
the cross sectional area of an isotropic scatterer which,
for a given incident power, would produce the same received
powe as the actual target. From this concept, the radar

cross section, ¢, is given by

x power reflected toward source/unit solid angle

o=4 incident power density

E 2
2 r
=4"lei|
where the parameters are

R: range to the target, assumed to be large enough such
that the target is in the far field from the transmit-
ting antenna

reflected field strength at the radar

M m

incident field strength at target .

It follows that the RCS of an isotropic reflector, e.g., a

sphere, 1is equal to its projected area normal to the direc-

tion of radar illumination. Most targets are not isotropic
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and exhibit directional preference. Objects with the same
physical projected area can have considerably different val-
ues for RCS. For example, at S-band, the RCS at nose-on as-
pect of a cone-sphere is 30 dB smaller than the RCS of a
sphere with the same projected area while a corner reflector
can have an RCS 30 dB greater than that of the sphere, all

having the same projected area of 1 n2.

Skolnik [92] and Nathanson [10] each have a good summary
of work by various investigators on target RCS and commonly

used statistical target modeis.

The RCS of a large complex target may be approximated by
assuming that the target is composed of individual reflec-
tors such that the total value of ¢ is related to the vector
sum of the individual cross sections, Ty in the folloving

manner:

o =] Timen{ 52 |

where dk is the distance from the radar to the kth reflector

with RCS, .

The RCS of a complex target is a strong function of the

aspect angle. Since the precise aspect angle is unknown in a
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given situation, the RCS is best described statistically. a
summary of the frequently used target models 1is presented

below:

1. Marcum case (nonfluctuating target):

For nonfluctuating targets, ¢"is a deterministic constant,
Let A denote the envelope amplitude of the received signal
voltage. Since the average power during the duration of the

pulse, A2/2, is proportional to o, it follows that

Kad = A?

where K, is the constant of proportionality. A constant

value of o implies a constant value of~A.

2. Swerling case 1:

This model assumes that a target is composed of many
reflectors where none is dominant. For this case, ¢* remains
constant over all N slants within a scan. However, o varies
randomly from scan to scan. The probability density func-

tion of the RCS is given by

1 g
U—“exp(-—q) c>0
p(o) = (2.6-1)
0 o<0

where Oav denotes the expected value of ¢¢ To represent the
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variation of signal-to-noise ratio from scan to scan due to
a target's RCS fluctuation, it is convenient to have an ex-
pression for the probability density function of the inte-
grated signal-to~-noise ratio, (S/N). It is the ratio of the
received time averaged signal power to the mean noise power
during the duration of the received pulse train integrated
in a slant. lLet So denote the received signal power assuming
no beam shape loss. Since the mean noise power is assumed to
be constant, (SO/N) is directly proportional to RCS. It
follows that
[%‘,’] = K,0 . (2.6-2)

Averaging over the fluctuations from scan to scan, the aver-

age signal-to-noise ratio is

( % J = K0, . (2.6-3)

Therefore, Egn. (2.6-~1) can be transformed according to

S
P(‘S?)=P(°)|—ﬂ§,;—| ] z
a(R) o ) e

N
—L— exp [ - S_"/ » So/N20
(S¢/N) So/N

- (2.6-4)
0, So/ N .
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The probability density function for the envelope ampli-

tude can be similarly derived using the transformation,

K0 = A?

from which it is found that

2 2
o =%‘ | & =72(—': , O “1%, . (2.6-5)
Then, p(A) becomes
2
po) | -3 | I C R
=A*/K, qFAY/K, 2 A?
p(A) = (2.6-6)
0, AdD .,

3. Swerling case 2:

This taréet model is assumed to be composed of many re-
flectors where none is dominant as with Swerling case 1.
Therefore, the probability density function for ¢ is identi-
cal to that in Swerling case 1. However, now the RCS is as-
sumed to fluctuate from slant to slant while the amplitude
of the received pulses within a CPI remains constant. This
rapid fluctuation is not encountered with pfactical targets.
However, it can be induced by slant-to-slant frequency agil-

ity.
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4. Swerling case 3:

This target model is assumed to be composed of many equal
size scatterers plus one dominant reflector which fluctuates
slowly from scan-to-scan. As with Swerling case 1, o remains
constant over all N slants within a scan. The probability

density function of this model's target RCS is given by

49 oof - .20
& ) 0 20

p(o) = (2.6-7)
0, od

where, as before, .. denotes the expected value of ¢. The

av
probability density function for the integrated
signal-to-noise ratio , p(SO/N), is obtained from Eqn.
(2.6-7) with the transformation given by Eqn. (2.6-3). Mak-

ing the substitution, ldcyd(SO/N)=1/Kb, into Egqn. (2.6-3)

gives
20 exp ( =t N)) » So/N20
(So/N)? (So/N)
S
" (_ﬁ} _ (2.6-8)

0, So/N<D

The probability density function for the envelope

amplitude A is again obtained from Eqn. (2.6-7) with the
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variable transformation

K,0 = A%, and K,0,, = A%, (2.6-9)

Use of ¢, |de/dA|, and q,, given by Egn (2.6-5), yields

p(A) (2.6-10)
0, AD .

5. Swerling case 4:

Swerling case 4 has the same probability density function
for ¢ as Swerling case 3. As in case 2, the RCS is assumed
to fluctuate from one slant to the next while the amplitude
of the pulses in a CPI remains constant. Swerling case 4 is
related to Swerling case 3 as Swerling case 2 is related to

Swerling case 1.

These probability density functions are used for deter-
mining detection probabilities in the baseline and modified

radar configurations described in the Chapters to follow.
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CHAPTER 3
PERFORMANCE OF THE AIRBORNE SURVEILLANCE RADAR IN ITS

BASELINE CONFIGURATION

Detection  probabilities in the baseline configuration for the five target

models introduced in Chapter 2 are determined in this chapter. This is done by

taking into account the number of pulses available for integration in each
slant, the beam shape loss, and the cell false alarm probability also estab-

lished in Chapter 2.

3.1 Sufficient Statistic and the Likelihood Ratio Test (LRT)

With reference to the receiver/processor block diagram of Figure 1.1-2, it s
assumed that the analog-to-digital converter (ADC) and the clutter canceller are

both ideal with their characteristics as shown in Figure 3.1-1 (a) and (b), re-

spectively.
output magnitude
e 'S
. A}
input -F, 0*fomin Fr
frequency
(a) ADC response (b) clutter canceller response

Figure 3.1-1 Assumed ADC and clutter Canceller Characteristics
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Let v(t) denote the received waveform at the IF filter output. Then, W(t) is

given by

n(t) :H,
W) = (3.1-1)
s(t-t3)p(t-t3)+n(t) ‘H,
where H, and H, denote the null hypothesis (target absent) and the alternate
hypothesis (target present), respectively. Under H,, v(t) consists of the noise
n(t) alone. The rectangular gating function p(t) in the expression of v(t) un-
der H, is of unit amplitude and duration r.  The clutter ¢(t) is not included
in Eqgn. (3.1-1) since the clutter spectrum is assumed to be confined in the stop
band of the clutter canceller. Therefore, the detection problem under consider-

ation is for target signals with doppler frequencies greater than f, .

which are .embedded in thermal noise. The delayed signal s(t-tj) can be

written as

s(t-t3) = Acos[(wyptwy)(t-ty) + Kt-t3) + 4] (3.1-2)

where A is the signal amplitude, &) is the signal phase modulation, ¢ is the

unknown initial phase, and tj is the round trip delay for a point target

located at range R. The time delay is given by

. 2R
ta =~¢

where ¢ is the speed of light.

Corresponding to the received signal with delay tj, there is a time gat-

ing pulse p(t-ty) which effectively multiplies the incoming signal. In general,
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t; is not equal to t;. The mismatch between tj and t; gives rise to

a range gate straddling loss, the average value of which is included in the sys-
tem loss factor. Having accounted for the straddling loss in this manner, it
is assumed in the subsequent analysis that ti=t;. Since the integrator
following the multiplier (mixer) is synchronized to t; and performs the inte-
gration over the duration of p(t-ty), p(t-t;) equals unity during the entire
integration period and can be dropped without effect. For the radar under consid-
eration, there is no phase modulation. Hence, t) = 0. The radar receiver un-
der consideration implements the Bayes strategy by performing the likelihood
ratio test (LRT) in each range, angle, and doppler frequency resolution

cell. Thus, without loss in generality, the delay in the expression for s(t) can

be dropped. Then, Wt) becomes

n(t) : under Hy
v(t) = ; kt<r, (3.1-3)
s(t)+n(t) : under H,

The  expression for s(t) can be written in terms of its quadrature compo-
nents s,(t) and sQ(t) as

s(t) = Acos{(wp+uy) t+4]

= Re {3(1) eliuipt)] }

Re {[sl(t)+,'sq(t)] exp[{viFt+4)] }

sp(t)cos(wpt+d) - sq(t)sin(wpt+d) (3.1-4)

where

jﬁldt

S(t) = Ae = 5i(t) + Fg(t) = Acoswgt + jAsinwgt
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is the complex envelope of s(t). The narrowband noise process n(t) can

also be expressed by its quadrature components as

n(t) = ny(t)cosuwpt - nq(t)sinwmt.

(3.1-5)

The receiver that maximizes the output signal-to-noise ratio is the correlation

receiver as shown in Figure 3.1-2.  This also maximizes the probability of detec-

tion when v(t) is Gaussian distributed.

""XQU)
f;IH( )dt—Y = -

@) K®
2 .
—=_  Asinwgt l___. X(k)
N
o [_ 7
O £ 1+ A (Re()*KIm())” == T_rp
Ho
yl(ry tl)
Xy(K)

t,+
fq’ "(ydt=Y =L Ld N-FFT

AN L
xl(l)

2

No{ %

ACOS%Ft

Figure 3.1-2 Equivalent Receiver block diagram

89




2A

No{%

mixer is chosen such that the variancesof yl(f, t,) and yQ(T, tl) are unity where N, /2

In Figure 3.1-2, the constant in the reference signal going into the product

is the two sided noise power spectral density and R, is the single pulse
peak signal-to-noise ratio. The noise power contained in a video bandwidth B is
equal to N,B. Thus, the single pulse signal-to-noise ratio (S/N)p at the input

to the FFT before correction for the loss factor is

S (1/2)A2 (/A E R
(Ts:),,' fE =R - =T (3.1-6)

The multiplier 1/N; before the FFT in Figure 3.1-2 is introduced so that

the variances of X,(k) and Xq(k), appearing at the FFT outputs,ave each unity.

Returning to Figure 3.1-2, the output of the product mixer 1is described by

first considering the signal and noise separately. Let the constant K represent

L 2A
AL

In each of the I and Q channels, repectively, the output of the product mixer for the
signal is
Ks(t)cos(upt) = K{sy(t) -fcosdrcos(2upt+d)]

-3q(V) élSiﬂMin(z‘"mM)]) (3.1-7)

and
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Ks(t)sin(upt) = K{s(t) S[-sindssin(2upt+d)]

-sq(t) -i[cos«#-cos(zwxpt#)]) . (3.1-8)

Similarly, the output of the product mixer for the noise is

Kn(t)cos(wypt)=K{ -%nl(t)[lwos(Zwmt)] - -énq(t)sin(Zwﬂ-t)} (3.1-9)

and

Kn(t)sin(upt)=K{- Sng(t)[1-cos(2urs)] +In(t)sin(2uygpt)) . (3.1-10)

The sampled output of the integrator is obtained by recognizing that the double
frequency terms integrate to zero while the narrowband signal and noise do not ap-
preciably change during the integration period 7. Thus, the sampled output of the

integrator is closely approximated by

K jt,;fs(t)cos(wmt)d: = 1(2! { s(t))cosd-sq(t )sing }
= ‘Iz( Ar { cos(wyt ) cosg-sin(wyt))sing }
KAr 31
=5 AT cos(wyt +4) (3.1-11)
and
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KI":S(t)sin(%pt) at = - KT (st psingusq(tpoosé )

AT { cos(wgt 1)sind‘»—sin(wdt I)cos¢ }

-..K
2
K Ar :
=-= sin(wgt+9) .
The sampled output of the integrator for Boise is

t,+71
K[ I‘I n(t)cos(wypt)dt ‘_I_(z_r ny(t)

and

t,+7
KJ "1 n(n)sin(upt)dt = - &7 ng(t)

Thus, the sampled output of the integrator is

—12( m,(tl) : under H,
yl(r’ tl) =
K AT K :
3 cos(wdtfqﬁ)-a—-z oyt : under H,
and
- K gt . under H,
yQ(f, tl) =

-k At sin(uwgt+9) - Km (t,) : under H
2 l 2'5Q 1
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(3.1-12)

(3.1-13)

- (3.1-14)

(3.1-15)

(3.1-16)

P e




The mean and variance of Y and Yq are

yl(f’ tl) .
under Hy
mean = 0

] 2ar \2—=—
variance =(——-—2N ﬂ ] n(t) =1.
under Hy:

mean = 255%9 cos(w,t 14-¢) = [, cos(ut [+¢)

variance = 1 .

yQ( Ta tl) :

under Hg:
mean = 0

variance = 1 .

under H;:

mean = -ﬁ sin(wdt[a-¢)

variance = 1 .

As shown in Figure 3.1-2, let
n =—L
x(l) = VALORY)
I

TN

and

-1
xq(D =J—ﬁl Yo ) -
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It is convenient to consider the FFT process for noise and signal separately.
Let ny(/) and n&(l) denote the I*! in-phase and quadrature noise sample in a

sequence for / =0, I, - -, Ny-1:

ny(h) =—8L 0T,

2N

and

ny() ==K ng(IT,) .

2 (N,

The kth output coefficient Ny(k) of the N;-point FFT in response to the input

sequence ny(/) is given by

Ny-1 .yl
N = £ m(he M k=01, - -, N-I
k) = E nil) e , » 1, = - Np-1 . (3.1-17)

Note that nj(/) is a zero mean white Gaussian noise sequence. Hence,
Enj()) =0 and E[n}()nj(m)] 'Wlx 5, -

The first and second moments of Ny(k) are given by

N1 2
E[Ny(K)] = lz=:o Elnji(Dle T =0 (3.1-18)
and
) N-1 Np-1 -j%’ +j-—2—;2'—n
E[N,(K)Ny(p)] = Ifo I Enj(Hnj(m)] e e 1T | (3.1-19)
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respectively. Note that the variance of ny(J) is 0,’,I 'Wll . Letting k=p, the

variance of Ny(k) is given by

. 27k(l-m)
Nl-l Nl-l -} T

1
var N()] = £ B g 8 e
Ny-1

=~ =1.

Y= N
For k#p, Eaqn. (3.1-19) becomes

t-exp [ - TR | N

k-
1-exp [ -j E(N;—p—)

EN(ON(P) =g

=0 for kip .

Identical results apply to the quadrature component NQ(k). Hence, the noise outputs

in different doppler cells are orthogonal. Because they are also zero mean, they
are uncorrelated. Nj(k) and Ng(k) are also Gaussian random variables because they

are each linear combinations of jointly Gaussian random variables. Therefore, Ny(k)

and Ny(p) as well as Nq(k) and NQ(p) are independent for kep.

The expected value of the cross term, E[Nl(k)N;(p)], is given by

. 2xkl . 2xpm
. N1 Nl SR R
EN(Ng(P)] = £ B Einj(hngmle e T .

A property of a stationary narrowband noise process of bandwidth B is that

the crossspectral density SNqu(f) of its quadrature components is purely imaginary

and is given by [13]
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SNINQ(f) - 'SNQNl(f)
JISN(F+f)-Sp(f-f ) B<f3B

0 : elsewhere .

If the bandpass néise n'(t) is Gaussian with zero mean, and its power spectral

density Sp(f) is locally symmetrical about the midband frequency ifg, then’ SNINQ(f)
equals zero. It follows that the in-phase noise ny(t) and the quadrature noise n’Q(t) are
orthogonal, i.e., E[ni(l)na(m)] = 0 for all /, m. Therefore, Ny(k) and Ngq(p) are

also orthogonal. Since both are zero mean Gaussian distributed, they are statistically

independent.

Next, the kth output coefficient S(k) of a DFT in response to the input
signal sequence s;(l)+_'y56(1), l=0,1, - -, Ni~1, is considered where [ derotes the
signal sample taken at t = /T, = [/F_.. From Eqgns. (3.1-15) and (3.1-16) and Figure

3.1-2, observe that

i) ==K Ar cos(2nlf,/F +4)

2 [N,

so() ==X A sin(27Ify/F 49) |

2 [N
Let s’() denote the weighted sum

(D = sy(D+3g()

K AT e)‘ ejz'fdlpl'
I

. H F
= d el ¢2Md/Fr (3.1-20)

et




where

d=-—l$— AT .
1

Tne DFT output S(k) coresponding to the input sequence s’(/), / =0, 1, - -,

Ni-1, is

Np-1 . ]
S(k) = ;3 (d ej¢ e“z’{d,yr) e'Jz’kI/Nl
=0
2o/ Fr-k/ NNy

Y
de TR/ F X Ny)

1 -

oM/ Frk/N)(N-1) sinm(f4/F -k/NpN;

jo
=de sin®(fy/F -k/N;) ° (3.1-21)

Let a and S denote -

a = '(fd/Fr' k/Nl)

B = m(fy/F + k/Np) .

Note that the DFT outputs, S;(k) and Sq(k) corresponding to input sequences,

sy()) and s&(l), respectively, are

d [ e jelN;-1) sinNj@e  _s -jgN;-1) SinN;8

Sk =9 [e®e T L 4 e —sim; (3.1-22)
i ja(Ni-1) SinNj@e ;s -jgN;-1) sinN,B

Sq(k) =5, [e¥e T —o - e (3.1-23)

Clearly, the sum, Sy(k) + BQ(k), is equal to S(k).
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When f;/F, =k/N;, a =0 Nf=2rk and the DFT becomes the
matched filter for the corresponding doppler frequency. Under this condition, the

DFT outputs become

14 -
S(k)lfd/Fr=k/Nl =d N e (3.1-24)

d Ny

j¢

=£—2§‘ (cos¢ + ping) (3.1-253)

d Ny s
SQUR)ye o /F ey =35 ©

d 2’;‘ (cosé + sing) . (3.1-25b)

With reference to Figure 3.1-2, the output X(k) of the summer following the

FFT's is given by

X(k) = Xy(k) + Xq(k)

Nl(k)+NQ(k) = N(k) : under H,
(3.1-26)

Sl(k)+BQ(k) + Nl(k)+NQ(k) = §(k)+N(k) : under H, .

For the remainder of the discussion, it is assumed that f3/F = kN;. The real and imaginary

parts of S(k) are determined from

S = S(K) + Bg(k)
= Re{S;(k)}-Im(Sg(K)) +;[ Im(Sy(k)+Re(Sq(K)}]

= d Ny cosé + id Nj siné .

Hence, the real and imaginary parts of X(k) are
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Re(Ny(k)} - Im(NQ(k)} : under H,

Re(X(k)) = { (3.1-272)
d Ny cos¢ + Re((N(K)) - Im(Ng(K)) : under H,

and

Im{(Ny(k)} + Re(NQ(k)} : under H,
Im{X(k)} = { (3.1-27b)
d Nj sing + Im{(Ny(k)} + Re{Ng(k)) : under H,.

It will now be shown that X(k) under H,, which is given by
X(k) = N(k) = Re(N(k)} + JIm(N(k))}

is a zero mean complex Gaussian random variable. To prove this, the following
must be verified:

1) Re{N(k)} is a zero mean Gaussian random variable

2) Im{N(k)} is a zero mean Gaussian random variable

3) Var[Re(N(k)}] = Var[Im{N(k)}]

4) E[Re{N(k)}Im{N(k)}] =0 .
From Eqn.(3.1-27), Re{N(k)} and Im{N(k)} are given by
Re(N(k)} = Re(Ny(k)} - Im{Ng(k)}
BT mthcos 27K 4 o (nsin 2260 i1
= £ [ ny( COS—N; + nQ(I)sm—Nl- (3.1-2823)
and
Im{N(k)} = Im{Ny(k)} + Re{NQ(k))

Np-1
v Nein 2Tkl . 27kl -
=z [ ni(Dsin G + ng(heos ] . (3.1-28b)
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Since ny(/), ng(l) are both zero mean yintly Gaussian random variables, Re{N(k)} and
Im(N(k)}, which are linear combinations of ny(/), ng(D), are zero mean Gaussian random

variables. In particular,

E[Re{(N(K)}] = E[Im{N(k)}] = 0 . _ (3.1-29a)

From Eqn. (3.1-28), the variance of the Re{N(k)) can be written as
Nt 2kl omid

var[Re(N(k)}] = E[( 1}=30 [nl(l)cos "I + ng(Dsin X L ] ) 1.
Since E[ny(/)ni(m)] = 0 for /+m and E[ni(l)nb(m)] = 0 for all /, m, var[Re{N(k)}]
becomes

Ni-1
var[Re{N(k)}] = }.." Eln}*(!) Jcos? (2""1) + 2 Eng*(N] sin? (2’”)
=1, (3.1-29b)

Similarly, varfIm{N(k)}] can be shown to be 1. To prove that Re{N(k)} and Im{N(k)}

are orthogonal, E[Re{N(k)}Im{N(k)}] is carried out as follows:

E[Re(N(k)}Im{N(k))]

= E[ (Re(Ny(K)} - Im(Ng(K)} } (Im(Ny(k)} + Re{Ng(K)} } ]

Ni-1 Np-1
-5 z Eln}()n}(m)] cosz—”5’ sml’-’NE“

{=0

Np-1 Np-1

+ L E E[nl(l)nq(m)] cos= Z"kl co,l’l_:}g.ﬂ
l=0 N 1
B A 2nkl .. 2riam

-lfo 2 E[n‘(l)nq(m)] sm—-—l— sm——w
N1 M n22H] o 2iam
p IR 2 coss— .

+I=0 E[nq(l)nq(m)] sinsg N, NI
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Since E[ny(/)ni(m)] = E[ng()ng(m)] = 0 for l+m, E{ni(l)na(m)] = 0 for all / and m,

and E[njX(N)] = E[n3’(D)], the above quantity evaluates to zero. Thus,

E[Re(N(k))Im(N(k)}] = 0 . (3.1-29¢)

It is concluded that N(k) is a zero mean complex Gaussian random variable.

With the above preliminaries, the mean and variance of the real and imaginary

parts of X(k) under both hypotheses are given as follows:

Re{X(k)
under Hy:
mean = 0

variance = | .
under Hp

mean = [N, cos$ = {R cosé

variance = | .

Im{X(K)}
under Hg

mean = 0

variance = | .

under H;:

mean = 4R sind

variance = | .

Recall that ® = N, = 2N,(S/N)p is the integrated peak signal-to-noise ratio.
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Define the envelope voltage r and the phase angle ¥ such that r and v are re-

lated to Re{X(k)} and Im{X(k)} by

r = 4 [Re(X(K)F + [Im{X(K)}}* . (3.1-300)
- Im{X(k)
u=tan1(-ﬁ§Y(ﬁ;) . (3.1-30b)

It follows that
Re{X(k)} = r cosv (3.1-31a)
Im{X(k)} = r sinv , (3.1-31b)
Note that Re{X(k))} and Im{X(k)} are statistically independent due to the indepen-
dence of Re(N(k)} and Im{N(k)). -
Under H,, the joint probability densty of Re{X(k)} and Im{X(k)} is

P(Re(X), Im(X}) = p(Re(X}) p(Im{X})

2 2
S ) enp (- ReXD” s AmE’)

2
- ] e /2 . (3-1'32)

2
By the transformation of variables given in Eqn. (3.1-31), the joint probability
density p(r, v) can be shown to be
p(r, V) == exp(-—r;) . (3.1-33)

The marginal density function p(r) is obtained by integrating Eqn. (3.1-33) over
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Y which becomes

r3

3 duzrexp(--'—;) ) (3.1-34)

p(r) s—zlﬂ,j':' re

Under hypothesis H,, the joint probability density function of Re{(X(k)} and

Im({X(k)) given ¢ and R is

p(Re(X), Im(X)I4.8) =35 exp
(3.1-35)

By the transformation of variables given in Eqn. (3.1-31), p(r, 44, ® can be

obtained as

pr, Ué, B =7 exp[ B 2%4_“ °°s‘¢“’)] . (3.1-36)

Integration of Eqn. (3.1-36) with respect to v gives the conditional marginal
density function p(ri¢, ® as
(e2
prld, B = re’ " +R/2 _2]%-[:’ ¢f TR () g,
2
= re'(" +3)/2 I(N® , (3.1-37)

where I, is the modified Bessel function of the first kind, zero order. Note
that Eqn. (3.1-37) is not a function of ¢. Assuming ¢ is uniformly distributed

between 0 and 27, the conditional density function of r given R is

prio) = [ p(r s = f," = Plrié.)ds

2
- re O () (3.1-38)
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The envelope voltage r is the sufficient statistic. Under the null hypothesis,
the probability density function for r, p(ri®), is Rayleigh as agiven by
Eqn. (3.1-34).  Under the alternate hypothesis, p(ri%) is Rician as given by
Eqn. (3.1-38), for all target models assumed. The likelihood ratio test (LRT)
decides that a target is present when the test statistic r exceeds the threshold

rp. Otherwise, it decides that a target is not present

r<rT.

The detection probability arising from the probability density of r given %

must be properly averaged over target RCS fluctuations which is carried out in the

‘next Section.




3.2 Detection Threshold and Probabilities of Detection

The detection threshold is determined from the cell false
alarm probability Pe prior to the binary post detection in-
tegration, and the probability density function p(r) for

the test statistic r under the null hypothesis H The

0"
false alarm probability is determined in Section 2.5 from
the given system false alarm rate and the specific post de-
tection integration involved. The probability density func-
tion for the test statistic under Ho is Rayleigh as given by
Egqn. (3.1-34). Hence, the cell false alarm probability )

is

2
p, = f: re"'z/2 = exp(--;) . (3.2-1)

The detection threshold r follows from Egqn. (3.2-1) and is

T

rp -.lz '“'ﬁl, . (3.2-2)

The probability of detection Pai in the ith slant condi-

tioned on the integrated peak signal-to-noise ratio for the

ith slant, denoted by %&, is obtained by integrating the

probability density function p(r|2&) under hypothesis Hl’
Let (S/N)i = NI(S/N)pi denote the integrated signal-to-noise

th

ratio for the i slant. Since §Qi = 2Ni(S/N)pi,
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(%), -7

Let (SO/N) = %0/2 denote the integrated signal-to-noise ra-
tio assuming all pulses are received through a rectangular
beam at its peak gain. Taking into account, LBsi’ the bean
shape loss for the ith slant, the integrated signal-to-noise

ith

ratio for the slant is expressed as

S S %
(R), =(R ) as) =(3 ) Leg) -
The actual beam shape losses, in dB, are determined and

tabulated in Section 2.4.

The conditional density function p(rl%&) is Rician for
all Swerling and Marcum target models assumed. Thus, for a

specified value of QQ, Pgi is given as

P, = J': rexp(-r2a%)/2 Io(ryR)dr = Qrp, {H) (3.2-3)

where Q(-) is Marcum's Q function [2].
For specified value of Q&; i=1,2,--,N, the detection
probability P'd(M,N) after M of N binary post detection in-

tegration is a function of Pgy’ Pgar ~ ~ Pgnr M, and N. This

is written as
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P¥M,N) = f(p 4y -,DdN.M,N); 1M<N. (3.2-4)

dz’

For an idealized rectangular antenna beam where Pgi = pdj’

i=3, P'd(M,N) is given by
, §_ N i (1 N-i
PaMN) = B TNt Po1Pa) -

In general, Pgi * pdj because the antenna beam is not
rectangular and LBsi * Lst. Then, Egn. (3.2-4) consists of

product terms of the form

)s Md<i<N-1 (3.2-53)

I (i-
JL pdk Y ( pd0+j) Q<
or
N .
I=I1 pdk ; i=N. (3.2-5b)

The unconditioned detection probability Py is obtained by

averaging P'd(M,N) over the random variations of (S/N)l'
(S/N)z, - -, (S/N)N. This process is illustrated in Figure

3.2-1. The unconditioned detection probability is given by

P, = [FIM,N)] (3.2-6)

where the overbar indicates an N-dimensional expectation
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Pé(M,N)

P
1st slant; dl
. Pas Mof N
ith slant] di
post
detection
integrator
P
Nth slan —dN

Figure 3.2~1 Process for Determinin

average
over
RCS

fluctuation

F—P4=Pg4 (M,N)

g Probabilities of De-

tection after M of N Post Detection Binary Integrator

P
1st slant di
Pas: Mof N
ith slant di
post
detection
_ ﬁntegrator
B _
Nth slant] aN_

Figure 3.2-2

Pa

=P'd(§d1l§d2l-lpdNIMIN)

Process for Determining Probabilities of De-
tection after M of N Post Detection Binary Integrator
(slant-to-slant RCS fluctation)
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with respect to (S/N)l' (S/N)z, - -, (S/N)N.

For scan-to-scan fluctuation, the signal-to-noise ratio
remains constant over each slant and Egn. (3.2-6) can be

written as

Py = FIUMN)] = [ PAM,N) p(Se/N) d(Se/N) . (3.2-7)

For slant-to-slant fluctuations, the signal-to-noise ratio
varies from one slant to another. Assuming the variations to
be statistically independent, each factor in Egns. (3.2-5a)
and (3.2-5b) can be averaged separately. The N-dimensional

expectation of Egn. (3.2-6) then involves product terms of

the form
1 (1- = I 1 (1= Md<N-1
LI Py, 1 ¢ pd(i+j)) LA A T’d(iﬂ-)) ; ds
and
N Ty . i =N
[k=1 pdk] - k=1 -pdk ’ 1= ?

respectively. Hence, the expression for Py corresponding to

slant~-to-slant fluctuation can be written as
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Py = [PAMN)] = 8By P, »-=Py MN) . (3.2-8)

The detection process for slant-to-slant fluctuating target

cases is redrawn in Figure 3.2-2.

The probability of detection for the five target models
introduced in section 2.6 1is developed below for the
baseline 3 of 3 post detection integration. For this pur-
posé, the center slant is designated with a subscript 1, and
each of the two outer slants is designated with a subscript

2.

1. Marcum (Nonfluctuating) case:
For this model, the probabilities of detection in the

center and outer slants are:

Py, = Qrp ) (3.2-9a)
Py, = UArrd %) (3.2-9b)
where
So .
%= )(Lps) s i=12.
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Since this model assumes no fluctuation, there is no averag-
ing with respect to RCS fluctuation. Thus, the detection

probability after 3 of 3 post detection integration becomes

Pi3.3) = Py = p, 0} - | (3.2-10)

2. Swerling case 1:
For this model, Pgi’ and P'd(3,3) are identical to the

Marcum case given above. Pq is obtained by averaging
P'd(3,3) over the scan-to-scan variations of (SO/N). Hence,

Py is given by

Py = [ [Pi(3,3)] D(Sy/N) d(So/N)
Sy/N

—L exp (-2~ ) dsyN) (3.2-11)

= §, Py3.3)
So/N So/N

where (§°/N) is the mean integrated signal-to-noise ratio
corresponding to the mean target radar cross section.
Further simplification is not possible and the integrand

must be evaluated numerically.

3. Swerling case 2:

For this model, Pai is the same as for the Marcum case.
Hence, Egns. (3.2-9a,b) are applicable. Edi for the ith

slant is obtained by averaging ﬁdi over the slant-to-slant
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variations of (S/N)i due to target RCS fluctuation:

Py = [otp,] PUS/NI) d((S/N)] - (3.2-12)

Substitution of Eqn. (3.2-3) for Pqi in Egn. (3.2-12) re-

sults in

Py = I ‘ j: r exp [-(r2+2(So/N)(LBSi)/2]
Iy [r [2(5o/N)(Lgs) ] dr} p(Sy/N)A(S¢/N)

where p(so/N) is given by Egan. (2.6-4). Interchanging the
order of integration transforms the above to a product of a
gamma function and a confluent hypergeometric function [2].
Using the ©power series expansion of the confluent
hypergeometric function leads to a simple closed form solu-

tion given by

lnpf

B, =exp ) i=12, (3.2-13)

' 1{S7N),

where (S/N); = (§0/N)(LBsi). The probability of detection

Py after post detection integration is

Pq = [Pa3.3)] = &, D, Py MN) =D dlﬁjz : (3.2-14)
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4. Swerling case 3:

The procedure in this case is exactly the same as that
used for Swerling case 1 except the density function for
,(SO/N) corresponds to one dominant plus Rayleigh (exponen-
tial power) scatterers. As with Swerling case 1, py; and

P'4(3,3) are identical to the Marcum case. P4 is given by

= 7 P33 p(so/N) d(Sy/N)

- P e e (-2T) asym (3.2-15) -
(SO/N)“ Sy/N

The above integral must be evaluated numerically.

5. Swerling case 4:

Exactly the same steps are used for this model -as in
Swerling case 2. However, the form of the probability den-

sity function for the variation of (SO/N) is identical to

that of Swerling case 3. From DiFranco and Rubin (2], Pgy;
for this case is given by
P = [ylp,] PUS/NL) d(S/N)]
1
. Inp Inp
- .
i 7N, ¥ (S5/N),
+ 7, e
(3.2-16)

where (S/N); equals (gb/N)(LBSi)’ The detection probability
after 3 of 3 post detection integration is

13




Pd ‘- [i dzsag)] = g(-pdl;bdz’-pdz’M’N) ‘_pdlﬁzz . (3'2-14)

Plots of Pd versus (§;/N) for the baseline configuration

are shown in Section 3.3 for the five target models.
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3.3 Detection Performance for the Baseline Configuration

The detection performance for the baseline configuration
is presented in this section by developing probability of
detection versus (§b/N) plots. To accomplish this, a cell
false alarm probability before 3 of 3 post detection inte-
gration corresponding to the given system false alarm
specification is first required. Procedures for obtaining
this are presented in Section 2.5. Next, the detection
threshold is determined per Eqn. (3.2-2). For each slant in
a beam dwell, the beam shape loss given in Section 2.4 is
then subtracted in dB from the stated (§6/N) before the con-
ditional detection probability, Pgi- is computed for each
target model. The number of pulses available for integration
for the baseline and modified configurations were determined
in Section 2.3. Finally, the detection probability after
post detection binary integration is determined according to

the procedures outlined in Section 3.2.

Figure 3.3-1 shows the probabilities of detection aver-
aged over the respective target fluctuations assumed for the
five target models described in Section 2.6. For these de-
tection probabilities, the threshold is set such that the
resulting system false alarm rate is 2 per each antenna scan

which takes ten seconds. When (§6/N) is 12.2 dB, the
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baseline yields the single scan detection probability of
0.32 for a Swerling case 1 reference target when it is 1lo-
cated at the reference range. Note that this is equivalent
to-the cumulative detection probability of 0.9 in 6 antenna
scans as explained in Section 1.1.3. The cumulative detec-
tion probability curves for the five target models are shown
in Figure 3.3-2. Given single scan detection probabilities
of Figure 3.3-1, the cumulative detection probabilities of
Figure 3.3-2 for 6 antenna scans arise as a natural conse-
quence. Therefore, the curves of Figure 3.3-2 are those to
which performance under scan-to-scan processing using 6
scans should be compared. It is evident from these figures
that fluctuating target models yield poorer detection per-
formance than a nonfluctuating target model in the region of
high SNR. Also evident is the influence of correlation
properties on detection performance. Swerling case 1 and
Swerling case 3 are more alike in their detection perfor-
mance than those for Swerling case 1 and Swerling case 2
even though Swerling case 1 and 2 have the same probability

density function for their RCS fluctuations.

Figures 3.3-3 through 3.3-7 are detection performance
plots for Swerling cases 1, 2, 3, 4, and the Marcum model,
respectively, for various cell false alarm probabilities.

With reference to Egn. (2.5-25), note that an increase by a
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factor of 10 in the cell false alarm probability results in
an increase of 1000 in the system false alarm rate because

P Consequently, one must be careful in lowering the

= n3
fa = Pg°
threshold in an attempt to enhance detection. The baseline
performance presented here will provide the basis for mea-
suring performance improvements in the modified configura-

tions discussed in the next two Chapters.

It should be noted that a separate beam shape 1loss is
used for each slant in the computation of (S/N)i. It is a
common practice in radar engineering to evaluate Py by using
for each slant the average value of (S/N)i obtained by com-
puting an average value of beam shape loss. However, this
yields optimistic results for Pd of 0.7 dAB for Swerling case
1l and 0.4 dB for Swerling case 2 in the vicinity of (§°/N) =
12 dB. These numbers were obtained by comparing two Sets of
detection performance results where individual beam shape
losses were used in one set and one average beam shape 1loss
was used in the other. The results for Swerling case 1, 2,
and Marcum target models are plotted in Figures 3.3-8 and
3.3-9 for individual and average beam shape losses, respec-
tively. This is very important in comparing the performance
of the modified configurations to the baseline performance.
The performance of the modified configurations would appear

pessimistic by the respective amount if one average beam
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shape 1loss had been used in the evaluation of the baseline

performance.

It should also be noted, in Figures 3.3-1 through 3.3-9,
that the normal time overhead per each slant of 5 millisec-
onds was used in the performance evaluation. When a
modified configuration includes a reduction of time over-
head, unless this reduction is a direct consequence of a
certain unique feature of the modification, the measure of
improvement should be by comparison of its performance to
the baseline performance which also includes the reduction
of time overhead. This is so that the improvement imparted
by the specific processing modification can be quantified
separately. For this purpose, plots of the baseline perfor-
mance with a reduced time overhead to 3.5 milliseconds per
each slant are shown in Figure 3.3-10 for Swerling case 1,

2, and Marcum target models.

Additional details on how the two different approaches to
beam shape loss affect detection probability estimates " are
included in Section 3.4. What happens to the beam shape
loss when the 3 of 3 post detection integration is changed
to a. 2 of 3 post detection integration all within a 3-slant

configuration is also discussed in Section 3.4.
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" 3.4 Effect of Beam Shape Loss on Detection Probability

In the analysis of detection probabilities for the
baseiine 3-slant configuration, it was found that a notice-
ably different performance prediction results when a single
average beam shape loss is used instead of the individual
beam shape loss for each slant. When one average beam shape
loss is used, the resulting detection probability for (§0/N)
in the neighborhood of 12.0 dB is more optimistic by 0.4 dB
for Swerling case 2 and by 0.7 dB for Swgrling case 1. This
is with the threshold for cell false alarm probability of
7.6x10"% which, in conjunction with the 3 of 3 post detec-
tion integration, yields the system false alarm rate of 2

for each antenna scan covering a 360 degree azimuth sector

in 10 seconds.

The above result is illustrated for a Swerling case 2
target below. A comparison for Swerling case 1 developed
using numerical integration is included in Section 3.3. The
actual beam shape losses of 0.3 dB for the center slant and
3.43 dB for the two outer slants can be converted to one av-
erage loss by first converting these dB's to equivalent
power levels referenced to a unit power level, obtaining the
average of these power levels, and taking the ratio with re-

spect to unity. The average beam shape loss so computed for
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the 3-slant configuration is 2.12 dB.

The actual SNR in each CPI, given (§°/N)=12.0 dB is 12.0
dB minus the respective beam shape loss. These are 11.7 dB
for the center slant and 8.57 dB for each of the two outer
slants. When the average loss is used instead, it is 9.88
dB. The corresponding detection probability in the ith
slant for a Swerling case 2 target can be obtained from Egn.

(3.2-13).

Let the detection probabilities in the center slant and
the two outer slants by 5&1' and 5&2' respectively. Also,
let the detection probability in any slant when the average
beam shape loss is used be denoted by ﬁd“ Letting (§7§)i =

oSNR(dB)/10

1 and using 7.6x10'4 for Pe in Egn. (3.2-13)

yields the following detection probabilities:

With these probability values, Pd' the overall detection
probability after post detection integration is computed for
the two cases: one using the actual beam shape 1loss for

each individual slant, and the other using one average beam
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shape loss for all 3 slants for 2 of 3, and 3 of 3 post de-

tection integration.

2 of 3 Post Detection Integration:

Let Pd(2/3) and P§(2/3) denote the detection probability
after post detection integration with actual beam shape
losses and with an average beam shape 1loss, respectively.

Then, P4(2/3) and P3(2/3) are given by

2 2 -
Py(2/3) = 2D, B, (15D,) + P, X1Dy) + D, B, (3.4-1a)
and

PH2/3) = 331D + B3 . (3.4-1b)

Substituting values of ﬁdl' and ﬁd previously deter-~

1 PL
mined into the above equations yields

P4(2/3) = 0.482

Py(2/3) = 0.527 .
Using the average beam shape loss resulted in a detection
probability which is more optimistic by 0.4 dB than the one

with actual losses as explained below. This was determined

by substituting for the (§7?I)i in Eqn. (3.2-13) a value 0.4
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dB 1less than the one based on the average beam shape 1loss
and obtaining a ﬁd value of 0.484. Next, substituting this
value for ﬁd in Egn. (3.4-1b) yields a value that is the
same as the one obtained by Egn. (3.4-la) using actual

losses.

3 of 3 Post Detection Integration:

Let Pd(3/3) and P§(3/3) denote the detection probability
after 3 of 3 post detection integration with actual beanm
shape losses and with an average beam shape 1loss, respec-

tively. These probabilities are given by

Py(3/3) = 2a0.11, 3.4-2a
A3 =D, B, (3.4-22)

and
Py(2/3) =B} = 0.139 (3.4-2b)

where use was made of the values for Edl’ ﬁdz’ pd previously
determined. Again, the result based on the average bean
shape loss is optimistic by an amount of 0.4 dB. This was
determined by following the same procedure used for the 2 of

3 post detection integration example.

Thus, a simplification in computing by use of an average
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beam shape loss resulted in an optimistic prediction by 0.4
dB for Swerling case 2 targets. An optimistic prediction by
an amount of 0.7 dB resulted for Swerling case 1 targets
when the detection evaluation is based on 3 of 3 post detec-
tion integration. This difference is obtained by comparing
the numerical integration results of Eqn. (3.2-11) for
Swerling case 1 with two different approaches to the beam
shape loss. The difference in detection prediction was also
computed for the Marcum target model. These results were
plotted in Figures 3.3-8 and 3.3-9 in Section 3.3 using in-

dividual and average beam shape losses, respectively.

Next, the following questions is considered: What happens
to the beam shape loss when the post detection integration
rule is changed from 3 of 3 to 2 of 3 in a 3-slant con-
figuration? There is a common misconception that the beam
shape loss would be reduced under a 2 of 3 rule. This notion
is based on the observation that if the binary post detec-
tion rule requires only two hits, the two contiguous slants
that could provide these hits would be found more favorably
centered about the peak of the antenna beam than would be
for 3 slants. While this observation is correct, the detec-
tion rule under this situation approaches a 2 of 2, not a 2
of 3 rule since the 3rd (and the 4th) slant is too far from

beam center to contribute significantly. The detection
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probability based on a 2 of 2 rule with less beam shape loss
is inferior to a 2 of 3 rule with slightly higher beam shape
loss. Alternatively, one can correctly observe that there
are two 3-slant sets on a sliding window providing 2 of 3
detection opportunities when 4 slants are symmetrically
situated about the peak of the beam éven though the bean
shape losses for the two outer slants are high. This obser-
vation is again correct. But, the 4 slants with higher beam
shape loss produces inferior performance, as will be shown,
to that produced by 3 slants symmetrically situated about
the peak of the beanm.

Fortunately, the differences can be readily quantified.
To this end, a snap shot of the train of modulation periods
passing by a point target at an instant of <the most
favorable placement for 3 slants, and 2 (or 4) slants are

depicted in Figure 3.4-1 (a) and (b), respectively.

¢ of beanm ¢ of beanm
toward a point target toward a point target
7 1l iﬂL AN — ﬁir i —
LBSfm 3.40 0.30 3.40 7.29 1.08 1.08 7.29
Pai- Paz Pax  Pa: Paz Paa Pay Py
(a) 3 slants (b) 2 or 4 slants

Figure 3.4-1 Beam Shape Loss for 2 of 2, 2 of 3 and 2 of 4
Processing given 3 Slants in a Beamwidth

134




The beam shape loss for each slant is computed according to
the method described in Section 2.4 and is indicated under

the slant for which it applies in the Figure.

As before, the detection probability in each slant for
the 3-slant case is denoted Pa1 for the center and P42 for
the two outer slants. For the 4-slant case, they are denoted
P43 for the two inner slants and Pas for the two outer
slants. The Swerling case 2 model is again used for simplic-
ity to determine the detection probabilities based on the
calculated beam shape losses so as to establish which place-
ment of the slants results in the minimum 1loss. We are
still dealing with a 3 slant configuration meaning there are
only 3 slants in a half power beam width and the detection
rule is 2 of 3 hits from a set of 3 contiguous slants se-
lected on a sliding window which advances at one slant in-
crement. An overall detection probability given 4 slants
and using a 3-slants at a time sliding window with a 2 of 3
rule is first established. Since the two 3-slant sliding
windows are overlapping, the probabilities of detection are
not independent, and a careful sorting is required before
determining the overall detection probability. This is best
accomplished by establishing the matrix of all possible com-
binations of only 2 of 4, only 3 of 4, and 4 of 4 detection

possibilities within the 4 slants given, and eliminating the
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ones which do not have the 2 or 3 required hits within the 3
slant élidinq window. Note that an M of N means M or more
hits in N trials while only M of N means exactly M hits in N
trials. This matrix of hits and misses along with the slid-

ing window is shown in Figure 3.4-2.

Now, the expression for the probability of detecting 2
of 3 in 4 slants on a 3-slant sliding window can be written
down by inspection of the matrix of Figure 3.4-2. The num-
ber of ways a detection can occur is all the possible combi-
nations shown in the Figure less those excluded by the
3-slant sliding window test. The sum of different numbers
of ways a detection can occur multiplied by the correspond-

ing probabilities gives the overall detection probability:

P4(2/4) (on a 3-slant sliding window)

=4p D, (15D, )(1p, ) + P, 21D, ) + 252D, (1°P, ) + P, %5, 2 .
aPa, (1P )Py ) + B, (1D, )" + 253D, (1D ) + B, P,

Obviously, the probability of detecting 2 of 2 from a

2-slant set is

Pi(2/2) =B, .

The probability of detecting 2 of 3 in a 3-slant set was de-

rived before in Eqns. (3.4-1la,b).
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Figure 3.4-2 Matrix of Possible Combinations of 2 of 4
Detections on a 3-Slant Sliding Window
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The probabilities of detection after 2 of 2, 2 of 3, and
2 of 4 binary post detection integration are computed as a
function of (§b/N) according to the equations derived for
the Swerling case 2 model. The results are listed in Table
3.4-1. It can be seen from the table that the detection
probability based on the 2 of 3 rule with 3 slants centered
about the beam center is superior to the result based on 2
of 2 or 2 of 4 rules using 2 slants or 4 slants centered
about the peak of the beam. This is in spite of the smaller
beam shape loss for the center 2 slants in these cases. As a
final point, it is noted that the average beam shape 1loss
depends on the number of slants within a half power
beamwidth. It has nothing to do with the values of M and N
selected for M of N binary integration. Those slants fall-
ing outside of the half power beamwidth contribute very
little to detection performance in the small signal region.
Actually, Blake [7] determined that the optimum beam utili-

zation is 84 % of the half power beamwidth.

138




Table 3.4-1

Detection Probabilities with 2 of 2, 2 of 3, and
2 of 4 Processing for a Swerling Case 2 Target

(S0 Pu2/2) B2/al R/
10.4 .222M17 .308167 .312528
10.5 .236682 © .328043 .332856
10.8 . .250970 .348318 .353562
11.0 .26555] .368923 .374578
11.2 .280395 .389785 .395834
1.4 .295472 .410828 .417259
1.6 .310748 .431975 .438782
1.8 .326191 .453147 .460333
12.0 .341769 .474263 .481840
12.2 .357450 .495247 .503239
12.4 .373202 .516021 524463
12.6 .388994 .536512 .545452
12.8 .4047917 .556649 .566148
13.0 .420580 .576367 .586496
13.2 .436315 .595605 .606448
13.4 .451976 .614308 .625959
13.6 .467538 .632429 .644990
13.8 .482975 649925 .663504

* 2 of 4 on a 3-slant sliding window as explained
in the text.
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CHAPTE:. 4

SYSTEM PERFORMANCE WITH SCAN-TO-SCAN PROCESSING

A description of scan-to-scan procéssing (SSP) and a de-
tailed analysis of the modified radar configuration with
scan-to-scan processing is presented in this Chapter. A
considerable amount pf effort has been spent in industry in
seeking a detection performance improvement by means of
scan-to-scan processing. Surprisingly, however, there is
little written material on scan-to-scan processing in the
open literature! in spite of more than a decade of industrial
independent research and development efforts that went into
investigatioﬁ of the concept. Evidently, the only documenta-
tion that exists are proprietary internal company
reports not available to the general public. These reports
document interim results of trials with various flight test
samples and some simulations. Optimistic improvement claims
as much as 12 dB in equivalent signal-to-noise ratio are
made without accompanying analytical verification? Similar
work named Track before Detect (TBD) [11, 12] was carried
out under the auspices of RADC.} This is not to be confused
with the TBD term used in the moving target indication
algorithm in infrared imaging [13].

TT_ZE_ZSETies to airborne surveillance radars
2. Upon careful exemination, this 12 dB includes improvement projections
arising mostly from other radar processing changes not directly

attributable to SSP.
3. for a ground surveillance radar
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In view of the primarily experimental nature of
industry's investigation, a need for  an independent
theoretical review of the concept arose as a consequence.
This investigé.tion provides one such review. The analysis
presented will show that only a marginal improvement is di-
rectly attributable to SSP when correct comparisons are

made.

4.1 Description of Scan-to-Scan Processing

As the effective range of avionics systems continually
increases, so does the need for increasing the effective
range of sensor systems. Because of the enormous cost and
risk involved in developing and deploying a new radar
systen, increasing emphasis is being placed on improving a
proven existing system capitalizing on recent technology
breakthroughs in signal processing. Thus, scan-to-scan pro-
cessing became one of the most appealing concepts for
improving performance. The improvement sought is to maintain
the same detection capability for targets whose radar cross
section (RCS) is continually being reduced. Equivalently,
an alternate aim is to extend the detection range for

conventional targets.

141




As described in Chapter 3, detection performance is di-
rectly related to the threshold setting. The philosophy
behind SSP is to lower the threshold to enhance detection.
The resulting increasé in system false alarm is expected to
be managed through data processing over many radar scans
whereby detection histories of true and false targets in
past scans are correlated and those detections which do not
result in realistic trajectories are rejected as false
targets. According to this notion, <there is no limit as to
how much the achievable improvement can be. It is only a
matter of how much data processing is to be performed to be

able to reject all false targets.

Oon the other hand, there is a theoretical approach for
determining the upper bound on performance improvement which
is possible through SSP. Recall Barton's result on
surveillance radar performance quoted in Section 1.1.3 when
the surveillance objective is to detect a target within a
specified interval of time with a high probability of
success. Given the total number of pulses available for
integration during this time interval and an option to
adjust the scan rate, Barton compared the resulting
performance between using the available pulses all in a
single scan with a slow scan rate and, alternatively,

dividing these into many scans with a faster scan rate. He
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considered the integration loss, scan distribution loss, and
target fluctuation loss, and concluded that it was more ad-
vantageous to use more than one scan to achieve the goal.
However, his analysis is based on some ideal assumptions,
e.g., a stationary target which falls in the same radar
resolution cell in every scan, and operation of the radar in
a low PRF mode such-that divisionof the available number of
pulses into many scans does not increase the total time

overhead.

Barton's integration loss is the loss incurred in video
integration when compared to what can be achieved in an
ideal coherent integration. His scan aistribution loss is
the additional number of pulses that are required for a
nonfluctuating target using many scans to achieve the same
detection probability as for a nonfluctuating target using a
single scan. The fluctuation 1loss is <the additional
signal-to-noise ratio required, on the average, for a fluc-
tuating target in a single scan to achieve the same level of
detection probability as for a nonfluctuating target. In
Barton's multi-scan strategy, detection probability in each

scan is assumed independent from any other scan.

Suppose now a storage device is introduced to accumulate

the results of several successive scans and a hit is
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declared when the same target is detected in <the same
resolution cell in J out of K successive scans. This, then,
would reduce the scan distribution loss. This, in essence,
is the scan-to~scan processing concept. In terms of math-
ematical expressions, given a total number of K scans in the
baseline without SSP, the cumulative detection probability

P, that is the probability of detecting the same target in

one Or more scans, was given as

P, = 1-(1-Pp)K (4.1-1)

where Py is the single scan detection probability assumed to
be independent from scan to scan. With SSP, the cumulative
detection probability, that is the probability of detecting
the same target in J out of a total number of K scans, is
given by

K K i K-i
Pe = L quroy Pal-P) - (4.1-2)

Of course, both detection rules should be subject to the
same system false alarm requirement. For J>1, the effect of
SSP is to lower false alarms relative to the J=1 case.

Therefore, for maintaining the same levels of system
false alarms, the detection threshold can be lowered with

SSP thus enhancing the detection probability.
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The extent to which the threshold can be lowered for a
moving target, with the resulting large increase in Znterim
system false alarms per scan prior tc SSP, depends on the
size of the correlation window which determines the number
of cells per scan where reports are correlated with those of
other scans. If sufficient information about the target
trajectory is known such that correlation could be performed
on a single resolution cell for each scan over the number of
scans in which correlation is performed, false alarm sup-
pression by the J of K integrator in SSP would be great.
However, the likelihood is small of correctly estimating the
resolution cell for each scan in which the target is 1lo-~-
cated. To account for the radar platform motion and target
maneuver during the scan-to-scan correlation period, the
correlation window for each scan is made larger for succes-

sively earlier scans as shown in Figure 4.1-1.

Note that, even with sSSP, M of N post detection integra-
tion still takes place within each scan so as to resolve
targét range ambiguity at least partially in each scan. Oth-
erwise, target range (and velocity) information would not be
available and there would be no basis to correlate present

scan detections with those of the past scans.
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correlation window for
the Kth scan

correlation window for
the ith scan

resolution cell in which target
is reported in the current scan

Note: Azimuth and range correlation windows only are shown.
Velocity correlation window is not shown.

Figure 4.1-1 Correlation Windows for Successively Earlier
Scans
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Two specific SSP concepts are examined in this investiga-
tion. One uses the 3-slant configuration, as in the
‘baseline, and employs a modified version of scan-to-scan
processing. As a result, this approach is referred to as
the modified J of K SSP. The other is based on a 2-slant
configuration and uses conventional J of K SSP. In both
versions, a sliding window is used with respect to the K

scans such that a decision is made after each scan.

In the modified J of K SSP, the threshold level is kept
the same as in the 3 of 3 baseline configuration and a full
success is declared when threshold crossings occur in all 3
slants of a given scan. All range and velocity ambiguities
can be resolved and operation is the same as for the
baseline configuration. Hence, SSP is bypassed for a scan in
which a full success occurs for the given target in that
particular resolution cell. A partial success is declared
within a single scan if and only if 2 threshold crossings in
any of the 3 slants in a particular doppler filter occur.
Note that this constitutes a failure in the baseline 3 of 3
post detection rule. In the modified J of K SSP rule, a
detection 1is declared when either a full success occurs in
the present scan, which is the same as the baseline, or both
a partial success occurs in the present scan and (J-1) or

more partial or full successes have occurred in the past
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(K-1) scans. For J=3 and K=8, this SSP is referred to as
the modified 3 of 8 SSP. For the modified J of K SSP, the
probability of detection at the end of each scan is called a
hybrid single scan detection probability since it can arise
from either a full success which 1is independent from
scan-to-scan or from partial successes in a number of scans

which makes the P, based on them no longer independent from

d
scan-to-scan. Since the threshold level is kept the same as
in the 3 of 3 baseline configquration, the 2 of 3 post detec-
tion integration generates in each scan an increase in false
alarms of more than 3 orders of magnitude. The association

from scan-to-scan is an attempt to reduce the false alarms

to an acceptable level.

The conventional J of K SSP concept is based on a 2-slant
configuration. By using 2 slants within a scan, it is pos-
sible to integrate more pulses per slant although the number
of slants is reduced. In this concept, the threshold level
is adjusted to maintain the same false alarm rate per scan,
before SSP, as in the modified J of K SSP described above.
This 1is done so that the two concepts can be compared on a
common basis. When there are only 2 slants, 1 of 2
detections cannot be considered as a partial success because
range and velocity information is unavailable for

correlation purposes due to unresolved ambiguities. Also,
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2 of 2 detections cannot be treated as a full success be-
cause the false alarm rate would be too high and the range
ambiguity could only be partially resolved. For conventional
J of K SSP, J or more partial successes in K scans are
required to declare a detection. Because of the sliding
window, a decision is made after each scan. However, the
detection probability associated with these decisions should
be compared with a cumulative detection probability based on

K scans as opposed to a single scan detection probability.

4.2 The Scan-to-Scan Correlation Window

The size and position of the correlation window allocated
for each scan is a function of the target parameters. In
particular, the correlation window for each scan is designed
to be large enough such that a maneuvering target appears
within the window. For this purpose, it is necessary to
account for the target's tangential velocity and
acceleration. In determining the window size, it is assumed
that the maximum 1linear acceleration is 1l-g (i.e., 9.8
m/sec.) along the radial velocity vector, and the maximum

tangential velocity is given by
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5V ; SVR<Ymax
VT =

max

Vv : SVR>V o ax

where Ve is the measured radial velocity in the present scan

and Vinax is the maximum possible velocity assumed.

The geometry for the correlation window in the ith scan
is shown in Figure 4.2-1. The procedure consists of
selecting a candidatcs target report which has the potential
of being included in the window, constructing the window
ussing its position and that of the present target report
under test, rejecting the candidate target report if it
falls outside of the window, and retaining the candidate
target report if it falls inside. This procedure is repeated
for all candidate target reports in the ith scan. With ref-

erence to Figure 4.2-1, define the following notation:

Wg: range correlation window width along the radial direction

Wq: cross range correlation window measured normal to the
radial direction

Vg: measured target radial velocity
\% platform velocity
a: linear acceleration of the target along its radial

velocity vector

6. : measured target azimuth angle in ith past scan
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T — wr /
wR 2 K dack ccan
o .
<5 [
? candidate target report
3
_ |
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—
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target trajectory ~.
R, 4
"present target report under test

with measured range and velocity
in the present scan

Q%
/e-
platform'/' latform position in the ith past
flight path ///Pscan -
|
present platform position with veloclty

vVa

Figure 4.2-1
Correlation Window for the ith Scan
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b : measured target azimuth angle in the present scan
R measured range to the target in the present scan

R,: - radial distance from the platform position to the point
where the radial lines to target positions in the present

scan and i‘" past scan intersect

1AR: estimated difference in range to the target between the
present scan and i*" past scan (AR=iTgVg) .

Also, introduce the notation:

o, : range measurement error
O : azimuth angle measurement error
o platform position error .

For the ith scan,

where ’I‘F is the frame time. From the law of sines, the dis-

tance RA is related to target azimuth angles by
Ry _VialiTp) =,
sin(7-6,) ~ sin(4-4,) ° 0
Ry _ Vp(iTp
Siné, = Sin(G-6p) ° b4, -

For the ith scan, the spatial size of the correlation window

extends over
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. . ) 2,1/2
+ Wg =[@UTR?2)? + 2A0p)® + 20,)® +2{R4R\#iAR)oisinif-0y) ]

i 22 . 2 212
+ Wp =[(V(iTp)? + 2(R+R #AR)g,? + 20)?] " .
Because of variations and uncertainties in the present
target velocity, it is necessary to extend the correlation

window into the velocity domain. The correlation window size

for the velocity is
. 2 . 2 1/2
+ Wy ={aTp)? + (Vosinié-g)*] " .

Having determined the (K-1) correlation windows related to
the present target report, the next step is to calculate the
false alarm multiplier associated with these windows. Let n,
denote the number of resolution units in the correlation
window for the ith back scan. The false alarm multiplier

for the (K-1) correlation windows is given by
Mg = (n)(ng)- - - (ng )

With SSP the total number of false alarm opportunities
equals My times the conventional number of false alarm op-

portunities for a radar without SSP.

To determine a realistic value for Mg,
1

specify a typical target maneuver. For this purpose, con-

it is necessary to

1. as worst case
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sider a target making a 6~g coordinated turn with a speed of
450 knots at a range of 150 nautical miles. The maneuver

scenario is illustrated in Figqure 4.2-2. Also, let

V, = 360 knots
0, = 0.003 radians

o, = 0.04 nmi

For this maneuver, the flight path is circular and a, = 0.
The corresponding correlation window size, in terms of
azimuth angle expressed in degrees and the number of range
and doppler cells, is 1listed in Table 4.2-1. On the
average, there are 3 slants contained in 1 degree azimuth.
The number of resolution units, ny, for the ith scan is
listed in the column labeled ni(l) where a resolution unit
is 1 slant by 1 range cell by 1 doppler cell. The false
alarm multiplier for K scans, K = 2,3,~--,8, is listed in the

column labeled MK(l).

If it were possible to estimate past target positions
down to a single resolution cell for each back scan, then,
the false alarm multiplier arising from SSP would be unity.
As shown in Table 4.2-1, the false alarm multiplier in-
creases dramatically as the window size is made large enough

so as to yield a high likelihood of covering the target.
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Turn Radius: r = ¥2/a
Centripetal Acceleration: a

Turn Rate: 7 s Yt/r

Target Position: X = Xo -Prcosy

Maneuver =
Center VeYy#rsiny

/ (xo'yo) Target Range: R = ((X - \Iat)2 + Yz)”
Range Rate: R(t) At

Maneuver
Range

- X (Longitude)
~platform moving @ 360 kts

Figure 4.2-2 Maneuver Scenario used for testing the SSP
Correlation Window
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Because this number is unacceptably large, a bigger resolu-
tion unit composed of 3 azimuth slants by 10 range cells by 6
doppler cells will be used in this analysis. (Any grouping
which is reasonable for the particular application can be
used.) Multiple threshold crossings in this larger resolution
unit now count as one. The corresponding number of resolution
units is listed under the column labeled ni(2) and the result-
ing multiplier is listed under the column labeled MK(Z). Ob-

26 yhile M, (2) = 1.35x10%Y.  Even

serve that M8(1) = §,28x10
though M8(2) is 15 orders of magnitude smaller than M8(1), it

is still a very large numbAr.
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4.3 Determination of threshold Setting and Depth of Scan

from False Alarm Considerations

The procedure for determining the cell false alarm prob-
ability P from the system false alarm specification was de-
veloped for a general M of N post detection integrator in
Section 2.5. This procedure requires determination of the
false alarm time, which follows directly from the system
false alarm specification, and the determination of false
alarm opportunities which takes into account utilization
factors for time, range cells, and doppler cells, and cor-
relation factors due to range and velocity unfolding for am-
biguity resolution, and use of sliding windows for M of N
binary integration. From the false alarm time Tea and the
number of false alarm opportunities in a false alarm time n,
the false alarm probability after post detection integration
Pfa is determined. From the knowledge of the specific binary
post detection rule, the cell false alarm probability before
the post detection integration Pe is then determined from
Pfa'

In the modified J of K SSP in a 3-slant configuration,
SSP is invoked if and only if a threshold crossing occurs in
2 of the 3 slants. This is called a partial success. When

threshold crossings occur in all 3 slants, which constitutes

158




a full success, SSP is bypassed. The modified J of K pro-
cessor then becomes identical to the baseline processor.
For this bypass feature to perform as in the baseline, the
threshold setting for each slant should remain the same as
that set for the 3 of 3 processing in the baseline. This is
equivalent to a lowering of the threshold for the 2 of 3
processing such that the false alarm rate per scan before
SSP increases by 3 orders of magnitude, as shown in Table

2.5-1.

To demonstrate the 3 orders of magnitude increase in the
false alarm rate before SSP and to facilitate evaluation of
the false alarm rate after SSP, the following events

relative to false alarm occurrences are defined:

Fl: false alarms occur in all 3 slants of a scan

F2: false alarms occur in 2 of the 3 slants of a scan
with no false alarm in the remaining slant

F3: false alarm occurs in at most one of the 3 slants of
a scan with no false alarm in the remaining slants

F4: event F1 for the present scan
F5: event F2 for the present scan

F6: event Fl or F2 for J-1 or more of the past K-1
scans and event F3 in the remaining scans

F7: intersection of event F5 and Fe6.
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Let n(Fl) and n(F2) denote the number of false alarm op-
portunities in a false alarm time associated with Fl1 and F2,
respectively. The average number of false alarms per scan

before SSP is then given by

T T
FA/SCaN|byrore ssP = P(Fl)n(Fl)-Tf—f— + P(F2)n(F2)Tf2 (4.3-1)
1

The first term in Eqn. (4.3-1) is the average number of
false alarms in a scan for the baseline which is specified
to be 2. The second term results by allowing partial suc-

cesses to also be counted. Note that

P(F2) ‘7!3—!12 p(1-p,) = 3p?. (4.3-2)

In Section 2.5 it is shown that the cell false alarm rate,

4

Pgr equals 7.6x10 ' for the baseline. Consequently,

P(F2) = 3p§ =1.73x10"% . (4.3-2a)

Analogous to the derivation of Egn. (2.5-32), the total num-

ber of false alarm opportunities per scan for event F2 is

T
n(Fz)Tfl = n(n W )nP.n .
22
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For the system under consideration

T
=42, Wg=2.2, =195, R.=6173, rg=3, np,=n-r— =1040 .
ta

It follows that

T
n(FZ)T—F- = 2.40x10° . (4.3-2b)
fa,
Hence,
T
P(Fz)n(Fzy.fl = (1.73x10°%)(2.40x10°) = 4.15x10° . (4.3-2¢)
fa,

The large predicted number of false alarms before SSP agrees

with the flight test result illustrated in Figure 4.3-1,.

Having introduced the false alarm multiplier MK(Z) in
Section 4.2 to account for the expanding correlation window
as a function of scan depth, the analysis can be carried out
by 1) considering correlation between single resolution
units over K scans for which the false alarm multiplier is
unity, and 2) applying MK(Z) to account for the actual cor-
relation window. With respect to step 1, the size of the
correlation window in each scan is one resolution unit. The
corresponding SSP process can be thought of as a combined
experiment of K identical and independent subexperiments

where the kth subexperiment, k =1, 2, - - , K, consists of
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21,134 false alarms / 57 scans
= 371 false alarms / scan over a 34 degree azimuth
sector

(371 x 360/34)
= 3,928 false alarms per scan before SSP

predicted number of false alarms / scan before SSP
= 4,150
Figure 4.3-1

Flight Test Verification of the Prediction of False Alarms
before SSP with 2 of 3 Post Detection Integration
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a detection trial in the kth scan for the resolution unit in
question. The sample space S for the combined experiment

can be represented by the product space
S =5, x8 x8 x -- xS (4.3-3)

where the kth sample space, Skf can be partitioned into the
three mutually exclusive events, Fl, F2, and F3. Let the
outcome of the kth experiment be denoted by the event
Ak where Ak
the K subexperiments can be represented in the product space

is either Fl1, F2, or F3. Then, the outputs of

as

AlezxAsx"xAK.

For the case of statistical independence,

P(A; X A, x Ag x -- x Ay) = P(ADP(A,) -- P(Ay) . (4.3-4)

That is, with independent experiments, the probabilities for
events defined on S are completely determined from prob-

abilities of events defined in the subexperiments [5].

By the rule established, a 'hit' in the modified J of K

SSP 1is a union of events F4 and F7. The probabilities of

these events are
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P(F4) = P(F1) (4.3-53)

P(F7) = P(F5 N F6) = P(F2)P(F6) , (4.3-5b)

respectively. Note that

P(F1) = p} (4.3-62)

P(F2) =3pX(1-p,) = 3p2-3p = 3p? (4.3-2)
K-1 K- i K-1-i

P(F6) = i=(’f.1) T!(SH_I.L)![P(H)W(H)] [PeE3) | . (4.3-6b)

The equivalent cell false alarm probability after SSP is

given by

Prajsteer ssp = FF4 VU FD) (4.3-7)

Since events F4 and F7 are mutually exclusive,

Praystrer ssp = P(F4) + P(E7) = P(F4) + P(F5)P(F6)

= P(F1) + P(F2)P(Fé) . (4.3-®

Pfalafter ssp 1S referred to as an equivalent cell false
alarm probability because it applies to the situation in

which the size of the correlation window in each scan is one
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resolution unit. The system false alarms after SSP are now
determined by suitably modifying Egn. (4.3-1). The first
term remains unchanged since this accounts for the SSP by-
pass. The second term is modified by replacing P(F2) with
P(F7) and multiplying the result by the false alarm multi-
plier MK(z). Consequently, the average number of false

alarms in a scan after SSP becomes

T T
FA/SCan ,¢\0; ssp = P(Fl)n(Fl)—.rfE + 1>(1=7)rvx,((z)n(m)T—f’;2 (4.3-9)
e

The first term in Egn. (4.3-9) is equal to 2 false alarms
per scan. Recall that it is required to be 2 or less by the
baseline specification. For the modified J of K SSP to meet
the same specification, the second term in Egn. (4.3-9) must
be negligible. With pf=7.6x10-4, it follows from Egns.

(4.3-5b), (4.3-2), and (4.3-6b) that

1.08x10716 for J=3, K=8
P(F7) =

5.18x10°Y for J=3, K=6 .

The number of false alarm opportunities, [n(Fz)TF/Tfa ], was
found in Eqn. (4.3-2b) to be 2.40x10°. From Table 4.2-1,
the false alarm multiplier MK(Z) is

1.35x10M for J=3, K=8

M(2) =
2.79x10° for J=3, K=6 .
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Thus, the second term in Egn. (4.3-9) yields

(1.08x10738)(1.35x10)(2.40x10°) = 3.49x10*
for J=3, K=§8

T
P(F7)MK(2)[n(F2)}.—r—f£ =
&2

(5.18x10737)(2.79x10%)(2.40x10°%) = 0.345
for J=3, K=6 .

The above results indicate that a suitable choice for the
target scenario described in Section 4.2 and the modified J

of K SSP is J=3, and K=6.

The conventional J of K SSP is considered next. For this
SSP, the number of slants in a beam dwell is changed from 3
to 2 in the hope of enhancing detection probability. This
change is intended to increase the SNR per slant by increas-
ing the number of pulses coherently integrated. The overall
time overhead per each beam dwell is also reduced because of
one less slant. The threshold is set, somewhat arbitrarily,
such that the resulting false alarms in a single scan before
SSP are equal to those arising from the 2 of 3 post detec-
tion integration used with the modified J of K SSP, as given
in Eqn. (4.3-2c). This enables comparison of the two SSP's

on a common ground.

The average number of false alarms per scan before SSP in

166




the modified J of K SSP with 2 of 3 post detection integra-
tion is approximately 4.15x%10°. This is equivalent to the

false alarm time of

Tp

T, =
fa = FA/scanperore ssp

= 2.41X10°3 seconds .

Now, two additional false alarm events are introduced:

F8: false alarms occur in a scan in both slants of a
2-slant configuration

F9: event F8 in J or more of the K scans.
A false alarm occurs after SSP only if event F9 occurs.

An expression for Pfa(M/N) is given by Egn. (2.5-24).
lLetting M = N = 2, it follows that

. aq T B 8
Py = P(F®) =—& I (K) .

Substituting the numerical values found in Table 2.5-1 gives

Pl = (2-4‘x‘°'3%f"25x‘°6)(0.479) (0.933) (2) (0.762) (282) (2)

= 7.89x10° .

Hence, P(F8) equals 1.27x10"°

1.13x10° 3.

. Since P(F8) = p%, Pe equals
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Let n(F8) denote the number of false alarm opportunities
in a false alarm time associated with event F8. The average
number of false alarms per scan, which is equal to 4.15x103,

can be written as

T
FA/SCaN botore ssp = P(F8)[n(F8)].-rlTl: = 4.15x10° .

It follows that the number of false alarm opportunities in a

scan is

T
[n(FS)]T—F = 3.27x10° . (4.3-10)
f

On the other hand, the number of false alarms per scan after

SSP is

T
FA/Scan| yr ssp = P(F9)MK(2)[n(F8)]T£ : (4.3-11)

P(F9) is given by

K . .
P(F9) = & T'Z'll((-'—;)" P(F8)'(1-P(F8))X"

2.41x10°!  for J=2, K=6

4.09x10°Y7  for J=3, K=6 .

From Table 4.2-1, the false alarm opportunity multiplier for
a scan depth of 6 is 2.79X106. Substitutions of these num-

bers into Egn. (4.3-11) yields
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2.19x10° for J=2, K=6

0.37 for J=3, K=6 .

It 1is evident that 2 of 6 SSP does not meet the system
false alarm requirement. Suitable values of J and K for the
target scenario described in Section 4.2 and the conven-

tional J of K SSP are J = 3, K = 6.
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4.4 Detection Performance under Modified J of K SSP

Detection performance under the modified J of K SSP using
a 3-slant configuration with 2 of 3 post detection integra-
tion is evaluated in this Section. The performance evalua-
tion is based on the cumulative detection probability under
a one minute time constraint. Let L denote the number of
scans within this constraint. For a 6 revolution per minute
antenna rotational rate for 360 degrees azimuth coverage,
the value of L equals 6. Recall from Sections 4.2 and 4.3
that extending the depth of correlation in SSP beyond 6
scans results in the average number of false alarms grossly
exceeding the system specification when adaptive correlation
windows are designed to accommodate target maneuvers up to
6-g coordinated turns at moderate speeds. Thus, even with-
out the time constraints, associating targets beyond 6 scans
would be impractical if not impossible, when ordinary target
maneuvers are considered. In addition, the problem that
arises in a dense target environment is the possibility of

incorrect correlation of target tracks.
As with the computation of system false alarms presented

in Section 4.3, the following events are defined to fa-

cilitate the analysis:
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D1: detections occur in all 3 slants of a scan

D2: detections occur in 2 of the 3 slants of a scan
with no detection in the remaining slant

D3: detection occurs in at most one of the 3 slants of
a scan with no detections occurring in the remain-
ing slants

D4: event D1 for the present scan

DS: event D2 for the present scan

D6: event D1 or D2 for J-1 of the past K-1 scans

D7: intersection of event D5 and Dé6

D8: event D1 in one or more of the L scans

D9: event D2 without event D1 in J or more scans of a
K scan deep sliding window where the window is one
or more subsets of the L scans

D10: complement to the union of events D8 and D9

D11: event D2 without event D1 in J or more of the
L scans

D12: complement to the union of events D8 and D11

D13: J or more partial successes occurring in L scans
without the occurrence of a full success but these
partial successes do not occur within a K scan
deep sliding window.

The probability of detection is a conditional probability
which 1is conditioned on the hypothesis that a target is
present. Consequently, it 1is assumed for SSP that the
resolution cell occupied by the target in each scan is known
a priori. Therefore, the correlation window used in false

alarm calculations is not applicable to evaluation of the

detection probability.
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As was done for false alarms in Section 4.3, cumulative
detection can be viewed as an event in a combined experiment
having a sample space S. The combined experiment without
SSP consists of L independent and identical subexperiments,
each with its sample space S;, where the (th subexperiment
is a detection trial in the (th scan for the resolution cell
in question:; L=1, 2, =--, L. The combined sample space is

given by

S=8§ xS x--x§ .

The [(th sample space can be partitioned into the three
mutually exclusive events D1, D2, and D3. Let the output of
the [th experiment be denoted by the event B, where B, is
either D1, D2, or D3. Then, the outputs of the L subex-

periments can be represented in the product space as

B, xB, x -- x By .

For the case of statistical independence,

P(B, xB, x -- x By) = P(B))P(B,) -- P(Bp) .

That is, with independent experiments, the probabilities for
events defined on S are completely determined from prob-

abilities of events defined in the subexperiments.
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Without SSP the detection in each scan is independent
from scan to scan. Let Pd denote the detection probability
for a single scan. The cumulative detection probability P,
is defined to be the probability of detecting a target in
one or more of the L scans. Assuming that the range closure

during this time span is negligible, P, is given by

P, = 1-(1-Py" . (4.4-1)

With the modified J of K SSP the cumulative detection
probability cannot be determined from the single scan detec-
tion probability since correlations are involved with detec-
tions in previous scans. As a result, independence no
longer exists from a detection in one scan to the next. Un-
der the modified SSP rule, recall that a 'hit' is declared
in a scan if the event (D4 U D7) occurs. However, because
of the above mentioned dependence between detection trials,
the cumulative detection probability over L scans is not
readily determined in terms of P(D4 U D7). The latter prob-
ability is referred to as the hybrid detection probability

after SSP and is given by
Ps(hyb) = P(D4) + P(D7) . (4.4-2)

A little thought leads to the conclusion that the cumulative
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detection probability for the modified J of K SSP is the
probability of the event (D8 U D9). Note that events D8 and

D9 are mutually exclusive events. Hence,

DENDY =g (4.4-3)

where g denotes the null set. Also, because D10 is the

complement of D8 U D9,

DS UD3 UDI0O=S.

In addition, note that D1, D2, and D3, which form a parti-
tion of the sample space S;, are also mutually exclusive.
For convenience, P, p, and g will be used to designate the

probabilities P(Dl), P(D2), and P(D3), respectively. It fol-

lows that
P = P(DI) = P43/3) = (pdlpzz) (4.4-4a)
p = P(D2) =[2p,p, (1-p,,) + p2,(1-p,) (4.4-4b)

a = P(D3) =((1-p,)(1-p,,)*+2p,(1-p, )(1-P,)+p, (1-P,,)*]
=1-P-p. (4.4-4c)

where the overbar denotes averaging with respect to target
RCS fluctuations. The detection probability in the ith

slant Pai and the method of averaging are developed in Chap-
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ter 3.

From the above discussion, the cumulative detection prob-

ability for the modified J of K SSP is

P, |w/ ssp = P(D8 U D9)

=1 - P(DI0) . (4.4-5)

Since D8 and D9 are mutually exclusive, Egn. (4.4-5) becomes
P |w/ ssp = P(D8) + P(D9) . (4.4-6)

Observe that

L L
P(D8) =1 -(1-Py3/3)) =1-(p+a". (4.4-7)

This corresponds to the cumulative detection probability for
the baseline configuration. Therefore, the second term in
Egn. (4.4-6) 1is recognized as the SSP gain. While Egn.
(4.4-6) reveals some insight into performance, it is simpler
to use Egn. (4.4-5) for computing Pclw/ sSSP where P(D10)
represents the probability of failure (i.e., missing the
target). A failure can arise by having either 1) less than J
partial successes and no full success occurring in L scans
(event D12), or 2) J or more partial successes occurring in

L scans without the occurrence of a full success but the

partial successes do not occur within the K scan deep slid-
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ing window (event D13). Since event D12 and D13 are mutu-

ally exclusive, it follows that
P(D10) = P(Dl2) + P(D1l3).
Note that the probability of event D12 is given by

P(DI2) = jg (I:)piqL'i , (4.4-8)

To count the number of ways to fail in the second case for
1<J<K, J<K<L, the outcomes in events D11l and D9 are consid-
ered for each J, K, and L as appropriate. The difference in
the number of outcomes in D11 and D9 when there are i>J par-
tial successes is denoted by NL(J,K). This difference is the
- number of ways to fail when at least J partial successes oc-
cur in L scans without the occurrence of a full success.
For each J and given L, P(Dll) is given by

L
P(DIl) =

ld(?)phbi_

This shows, for a given J, that there are exactly
L!'/(i!(L-i)!'), i =J3, ==, L, possible ways for a partial
success to occur in i scans with neither a partial nor a
full success occurring in (L-i) scans. Event D9 is clearly
a subset of event Dll1. For i>J, the number of elements in
D11 but not in D9, which we have denoted by Ni(J,K), is most

readily counted by forming a table of all possible outcomes
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for event D11 and applying the K scan deep sliding window to
identify those which do not belong to the event D9. Such
tables for J=2 and K<l1=6, and J=3 and K<l=6 are shown in
Tables 4.4-1 and 4.4-2, respectively. Having determined

Ni(J,K), the probability of event D13 is

L . c . .
P(D13) = & Ni(JK)pql- (4.4-9)

An example illustrates the procedure for computing
Pclw/ sSSP when J=3 and K=L=6. From Egqn. (4.4-8), the number
of ways to fail when i<3 is L!/[i!(L-i)!], i =0, 1, 2. The

corresponding probabilities of failure for these values of i

are
i=0: Q¢
i=1: 6pq®
i=2: 15p%q* .

From Table 4.4-2, the number of ways to fail when i=3 and

i=4 are:
i=3: 0
i=4: 0.

It is obvious that the number of ways to fail when partial
successes occur in 5 or more scans is zero. Hence, P(D1l0) =

P(Dl1) for i>5. Using the above results in Egn. (4.4-5)
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Table 4.4-1 Ways to Fail in J=2. of K<L=6 SSP

Combinations of is2 Partial Successes and 4 Fallures over Lsb
Scams (13 possible ways for the piq? term)

Scan No.

1 111 11000O0OO0CODODUOOO0

2 100001171171 1YO0O0O0UO0TUOO

3 1Y 0001 0001111 0O0UO0

4 001Y0O0O1YTO0O10O0OU11110

5 0001YO0OOOI11O0O010O0 ; 0

6 00001 OO0 OO O 11

#3(2,%)
Scan Number of Ways

Depth (K) to Fail

2 X X x x X x x x X X 10

3 X x X b I x 6

4 X % x 3

5 X 1
6 or wore 0

Combinations of i=s3 Partial Successes and 3 Failures over Ls6
Scans (20 possible ways for the pg® term)

Scan No.

1 17T YT 7T YY1y 00 00 O0OOOTGOT O

2 1YY Y 00 0O0O0OTTIT1TTT Y YY OOOO

3 1 00013YOYYOOO0OTDYTDY 1T OOOTT T 1O

4 01001001 1Y010O0T1 11011 1 1V

5 00 (1, 001010101011 011 0O

1 1
6 00 1T 001 01T OO O} 0 1 N2(2' )
Scan Number of Ways

Depth (K) to Fail

2 X X X x 4

3 or more 0




Table 4.4-2 Ways to Fail in J=3 of K<L=6 .SSP’

Combinations of je3 Partial Successes and 3 Failures over Lsé
Scans (20 possible ways for the pg® term)

Scan No.

3 T1T %Y1 13T Y3111 0000O0O0OOOOT O

2 1171 000O0O0OCTTTIITI11ITI1TT1T1ITITOOODOOO

3 T OO0 0 Y)Y YOOOIYYOOO1T Y1 O

4 0100110 011TYO01TOOT1TTYT O Y1 Y1

5 001YO0O01YTO0O11TO01 00110101100 1

6 0001 0C01YO0O11TYTOOI1TO011T I O 11 1 1

NZ(3,K)
Scan Number of Ways

Depth (X) to Fail

3 X X X X X X X X X X X X X X X X 16

4 X X X X X X X b3 b S 10

5 x X X X 4
6 of more : ) 0
Combinations of im4 Partial Successes and 2 over L=6 Scans
(1S possible ways for the pig? term)
Scan No.

1 17T YT OYCDYYYYY 00000

2 11T YY1 10000 1Y 1T 1YY O

3 137y 00071 Y1YT 01 Y Y 0O

4 1001 Yy 01T 1T 01T 1Y 0 V)

5 oYy o010 1Y1I 01T 1T1TO1 11

6 0 0 1 01T Y 0 1Y 31T Y OY YV Né (3,K)

Scan Number of Ways

Depth(k) to Fail

3 X X x X x x 6

4 x 1
5 or more 0
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yields

Pejws ssp = 1 - B(DI0) =1 - (q®+6pq’+15p’a?) . (4.4-10)
The alternate form of Pclw/ ssp by Egqn. (4.4-6) is

P |y ssp = P(D8) + P(D9) =1 - (1-P)* + P(D9)

=1-(1-P)°%+ [ 20p°a>+15p*a?+6p%a+p®/1/ . (4.4-11)
That the above two expressions yield the same numerical re-
sult is illustrated in Table 4.4-3. 1In this example, it is
assumed that Pg; = Pga for simplicity such that the detec~
tion probabilities in all 3 slants are identical. This is
equivalent to using one average beam shape loss for each of
the 3 slants. The result of the example is of course ex-
pected. That Eqns. (4.4-10) and (4.4~1l1) are identical can
be shown by substituting (p+q) for P in Egn. (4.4-10) and

carrying out the algebra:

P, |w/ ssp = P(D8) + P(D9) =1 - (1-P)" + P(DY)
= 1 - [ p®+6p°q+15p*q?+20p3q3+15p2qt46passqt]
+ [ 20p3q3 +15p‘q2 +6p5q +p6]

= 1 - (g®+6pg°+15p%q*) .

Following the same procedure, the expressions for

- - — i do
Pclw/ SSP for J=2 and for J=3, and k<l=6 are determine

180




Table 4.4-3

An Illustration for Computing P

|w/ ssP

by Two Formulas

(3-Slant Configuration with 6-Scan Deep SSP)

P

P(D8)

P [w/ sSSP P [w/ ssP
Egn.4.4-5 Eqn.4.4-6

0.1177031
0.1406250
0.1644844
0.1890000
0.2138907
0.2388750
0.2636719
0.2880000
0.3115782
- 0.3341251
0.3553594
0.3750000
0.3927657
0.4083750
0.4215469
0.4320000
0.4394531
0.4436250
0.4442344
0.4410001

0.0664269
0.0901633
0.1184709
0.1514509
0.1890810
0.2312025
0.2775120
0.3275578
0.3807418
0.4363300
0.4934678
0.5512050
0.6085276
0.6643983
0.7177992
0.7677816
0.8135140
0.8543281
0.88975891
0.9195747

0.0902742
0.1280342
0.1744983
0.2294627
0.2920931
0.3609468
0.4340711
0.5091608
0.5837611
0.63554816
0.7222001
0.7822266
0.8344148
0.8782052
0.9136057
0.9411144
0.9616017
0.9761709
0.9860174
0.9923041

program used for computation:

10 Pl = .2
20 PRINT " P
30 FORI =1 TO 20

40 P1 = Pl +

.025

50 PP = P1%3
60 P = 3*P1°2*(1 - Pl)
70 Q=1-~P - PP

80 PCl =1 - (Q0°6 + 6*P*Q*5S + 15*P“2*Q*4)

pC

90 PC =1 - (1 - PP)"6
100 PC2 = PC + 20*P~3*Q"~3 + 15%P~4%*Q*2 + 6*P~5*Q + P~6

110 PRINT USING " #.###3###3"; P, PC, PC1l, PC2

120 NEXT
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0.0902744
0.1280342
0.1744984
0.2294628
0.2920930
0.3609468
0.4340711
0.5091610
0.5837610
0.6554816
0.7222000
0.7822268
0.8344150
0.87820S53
0.9136057
0.9411142
0.9616016
0.9761709
0.9860175
0.9923042

PCl

pCc2"




1

The results are listed in Table 4.4~-4. Using these formulas
and Eqn. (4.4-4), cumulative detection probabilities as a
function of scan depth K for the 5 target models are com-
puted by numerical integration. The results are shown in
Table 4.4-5 (a) through (f) for Swerling cases 1 through 4

and Marcum target models.

Recognizing that the baseline configuration corresponds to
a scan depth of unity, it is evident from Table 4.4-5 that a
only a modest improvement is achieved by SSP. In an attempt
to explain more optimistic projections by other investiga-
tors, both the interim detection probabilities arising from 2
of 3 post detection integration before SSP and the hybrid de-
tection probabilities after SSP, defined by Eqn. (4.4-2) are

computed. The former is given by

P,(3/3) = P(D1) + P(D2)
while the latter is given by

Py(hyb) = P(D4) + P(D7) .
Values of J=3 and K=8 were used for evaluating Pd(hyb) in or-
der to get more optimistic results. Numerical results for
these quantities are shown in Table 4.4-6 (a) through (e) for
Swerling cases 1 through 4 and Marcum target models. Cumula-
tive detection probabilities under the scan limit of I=6 for

both with and without SSP are also shown. These results are

182




Amomaa+: Nama+moao+mcv - 1 (yz0+cbAg+gD) - T S
ANU#Q+MUMQO.H+:ONQmH+mca©+wUv -1 A:UNQM...mUQm._.ms - T f7
ANo:Q@+MUMQ@H+#ONQmH+mUQo+wUv - T A:UNam+mcam+oov - T ¢
OA&...._..V -T AMUMQ:.*#UNQOH._MUQ@..@UV - T A
gld-T) - T gld-T) - T T

dSS M J0 ¢ dSS M io¢g dss 403

yidsg uonds
b ¢

Jurssadtorq ued$-03-UeBdS YITIM
Auﬁmﬁnanouu U0T32939(Q dATIBTNUN) X0F suoissaxdxy p-p°p @19l

183




Table 4.4-5 Cumulative Probability of Detection vs. SNR, 3-Slant,
" Normal Time Overhead, as a Function of Scan Depth Used

a. Swerling Case 1
Pc w/ussp in 6 scans for 2 of K SSP ° Pc w/ sspin 6 scans for 3 of X SSP

$o/N scan depth used scan depth used

(dg) Pd(3/3) 2 3 4 5 3 1 2 3 4 5 5
10.8 163 .66 .7t .74 78 .77 .77 .66 .66 .87 .67 .83 .53
1.2 .175 .69 .74 .76 .78 .79 .80 .63 .69 .69 .70 M .72
1.4 .188 .71 .76 .78 .82 .81 .82 1 . .1 .73 .74 TS
18.6 .201 J74 .73 .8} .83 .83 .84 - 4 4 TS W@ .TTVTF
1e.9 ,215 77 .81 .83 .88 .85 .S5§ T T .18 .79 .80
11.9 .229 .79 - .83 .85 .86 .87 .88 79 .79 .80 .81 .81 .82
11.2 .243 .81 .85 .87 .88 .88 .89 .81 .81 .82 .83 .83 .84
1.4 257 .83 .87 .89 .%% .9 .9 .83 .83 .84 .85 .85 .86
11.6 .272 .85 .89 .% .91 .82 .®:2 .86 .85 .86 .87 .37 .88
11.8 .287 .87 .9 N .92 .93 .53 .87 .87 .88 .88 .83 .8%
<.® .302 .88 .9 93 .93 .94 .9 .96 .88 .8% .se .3 .2
12.2 .518 .98 .93 .9« .94 .95 .=5 .32 .% .91 8-} .82 .82
12.4 333 .91 .84 .88 .8 .96 .3 B2 .9 .82 .82 .33 LS5
12.6 .348 .92 .95 .95 .96 .9 .S6 .52 .92 .93 .93 .34 .94
12.8 .365 .93 .95 .9 .57 .97 .97 .93 .93 .94 .94 .85 .95
13.0 .33 .94 .95 .97 .97 .27 .97 .34 .94 .95 .95 .55 .S5

b. Swerling Case 2

Pc w/ ssp in 6 scans for 2 of K SSP Pc w/ ssp in 6 scans for 3 of K SSP
So/N scan depth used scan depth used
(dB)Pd(3/3) 2 3 s s 3 A -

8 1 2 s 8
10.9 .037 200 .39 .47 .52 .55 .57 .20 .20 .24 .28 .31 .33
1.2 .042 .23 .43 .51 .56 .53 .G} .23 .23 .27 .32 .33 .37
10.4 .@48 .25 .47 .S6 .60 .63 .6S .25 .28 .31 .35 .39 .42
10.5 .054 .28 .51 .60 .B4 .B3 .53 .28 .28 .34 .39 .13 .46
19.8 060 .3t .55 .84 .68 .7V .73 31 31 .37 .43 .48 .SD
1.9 .8587 .34 .59 .88 .72 .75 .78 W34 .34 a1 .47 .82 .S
11.2 ,e75 .37 .63 .7 .75 .78 .80 .37 .37 .45 .51 .58 .53
V1.4 ,083 .40 .67 .73 .73 .81 .83 .40 .40 .49 .55 .63 .63
11.6 .091 .44 .70 .78 .82 .84 .85 .44 .44 .83 .89 .84 .67
11.8 .100 .47 .74 .8y .84 .87 .88 .47 .47 .55 .63 .88 .7l
2.0 .110 .50 .77 .84 .87 .89 .90 .58 .5%¢ .68 .87 .72 .75
12.2 .120 .54 .80 .86 .89 .91 .82 .54 .54 .84 .M .15 .78
12.4 131 .57 .83 .88 .91 .92 .83 .57 .57 .87 .7¢ .79 .BI
12.6 .142 .60 .85 .50 .92 .94 .94 .68 .60 .7V .77 .82 .84
12.8 .154 .63 .87 .92 .94 .95 .9 ,63 .63 .74 .8@ .84 .87
13.0 186 .66 .83 .93 .95 .96 .56 .66 .66 .77 .83 .87 .s%

184




Table 4.4-5

Cumulative Probability of Detection vs. SNR, 3-Slant,
Normal Time Overhead, as a Function of Scan Depth Used
{Continued)
c. Swerling tase 3

Pc w/ ssp in 6 scans for 2 of X SSP Pe ¥/ sspin 6 scans for 3 of K SSP
So/N scan depth used : scan depth used
(dB)Pd(an) ! 2 3 4 s & 1 2 3 4 s (5
19.8 .139 .59 .89 .73 .75 .77 .78 .59 .59 .61 .63 .85 .66
19.2 .153 83 .12 .18 .13 .88 .81 .63 .3 .65 .67 .6% .70
16.4 .168 .87 .76 .88 .82 .83 .84 .67 .67 B9 .70 .13 .74
19.5 .184 7Y .79 .83 .84 .86 .85 K TR, [ T~ S - | -
19.8 .21 .74 .82 .85 .87 .88 .B9 .74 74 .78 .18 .79 .80
11.0 219 .77 .85 .88 .89 .90 .91 7T .79 .8t .82 .83
11.2 .237 .80 .87 .se .81 .92 .82 .60 .sa .82 .84 .85 .86
11.4 .256 .83 .89 .92 .93 .93 .% .83 .83 .85 .86 .87 .88
11.6 .275 .85 .91 .93 .84 .85 .85 .86 .88 .87 .89 .90 .%0
11.8 .295 .88 .93 .84 .85 .96 .96 .88 .88 .89 .81 .91 .92
12.90 .316 .99 .94 .9 .85 .97 .87 .99 .0 .91 .92 .93 .94
2.2 .337 .92 .95 .96 .97 .97 .98 .82 .92 .93 .94 .94 .98
12.4 ,358 .93 .96 .97 .%8 .98 .88 .3 .93 .34 .95 .95 .96
12.6 .380 .94 .97 .98 .98 .98 .99 .9¢ .94 .95 .9 .9 .87
12.8 .402 .95 .98 .98 .59 .89 .89 .85 .95 .9 .87 .97 .97
13.0 .424 .9 .38 .99 - .88 .93 .99 .% .96 .87 .98 .98 .98
d. Swerling Case 4
— Fc w/ ssp in 6 scans for 2 of K SSP Pc w/ sspin 6 scans for 3 of K SSP
So/N scan depth used scan depth used
(dB) Pd(3/3) 2 3 4 s 6 1 2 3 I 5 s
10.8 045~ .24 .46 .55 .50 .63 .65 .24 .24 .30 .38 .38 .4
1.2 .0S3 .28 .51 .60 .65 .68 .70 28,28 .34 .39 .44 4B
19.4 061 .31 .87 65 .70 .73 .74 31 .31 .38 .44 .49 .52
19.6 .Q70 .3 .62 .7 .1 .77 .M .35 .38 .43 .S .55 .58
19.8 ,080 .33 .67 .75 .79 .8t .83 .39 .39 .48 .55 .88 .53
1.0 .091 .44 .7t .79 .83 .85 .86 .44 .44 .53 .60 .85 .68
11.2 .103 .48 .76 .83 .86 .88 .89 .48 .48 .88 65 .70 .73
11.4 .16 .52 .80 .86 .89 .91 .92 .52 .52 .83 .70 .15 .78
11.6 .130 .87 .83 .89 .91 .93 .94 .87 .87 .68 .75 .79 .82
11.8 .146 .61 .88 .91 .93 .85 .85 .6t .81 .72 .79 .83 .85
12.8 .182 .65 .89 .93 .95 .9% .96 .65 .65 .77 .83 .86 .89
12.2 178 .69 .91 .95 .86 .97 .97 .69 .69 .80 .86 .89 .Si
12.4 .197 .73 .93 .% .37 .98 .88 73 .73 .84 .83 .92 .93
12.6 .17 .77 .88 .97 .98 .39 .89 7?7 .77 .87 .91 .84 .95
12.8 .237 .80 .96 .98 .98 .99 .89 .80 .88 .9 .93 .95 .96
13.9 .257 .83 .97 .99 .99 .99 .s9 .83 .83 .82 .85 .57 .97
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Table 4.4-5 Cumulative Probability of Detection vs. SNR, 3-Slant,
Normal Time Overhead, as a Function of Scan Depth Used
: (Continued)

e. Marcum (Non-Fluctuating Case)

Pc w/ ssp in 6 scans for 2 of KSSP  Pc w/ ssp in 6 scans for 3 ofK SSP

scan depth used scan depth used

%Eé?pd(3/3) | 2 3 P 4 5 H f 2 3 4 5 H

10.0 .@52 .28 .s4 .64 .63 .72 .73 .28 .28 .35 .42 .47 .3
10.2 .064 .33 .2 .7 .15 .78 .30 .33 .33 .42 .49 .53 .58
19.4 .079 .33 .68 .78 .82 .84 .35 .39 .33 .52 .87 .83 .65
18.6 .08S 45 .76 .83 .87 .89 .90 .45 .45 .57 .BS .N .74
19.8 1185 .52 .82 .88 .91 .92 .33 .52 .52 .65 .73 .78 .8®)
11.9 (137 .59 .87 .92 .94 .85 .96 .58 .88 .72 .79 .Bs .86
11.2 162 .68 .91 .95 .9 .87 .88 .6§ .65 .79 .88 .89 .9
1.4 191 .72 .94 .97 .98 .98 .99 .72 .M .65 .% .93 .94
1.6 .223 .78 .96 .98 .89 .83 .99 .78 .78 .83 .93 .96 .57
11.8 .258 .83 .98 .99 .99 1.90 1.20 .83 .85 .93 .9 .97 .98
12.8 .296 .88 .99 t1.00 1.00 1.00 .00 .88 .88 .96 .98 .99 -1
12.2 336 .91 .99 1,90 1.0 1.20 t.00 .91 .91 .97 .99 .99 1.2?
12.4 .379 .94 1.00 1.90 1.0 1.20 1.90 .94 .94 .98 .99 1.20 .20
12.6 .425 .96 1.00 1.00 1.60 1.0 1.9 .56 .95 .99 1,20 1.7 .90
12.8 .47 .98 1.00 1.60 1.00 1.00 i.20 .98 .98 1.00 1,00 .20 i.20
13.0 .519 .99 1.00 1.20 1.0 t1.98 1.20 .39 .99 1.30 1.20 (.20 1.29
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Table 4.4-6

Probability of Detection vs. SNR, 3-Slant,
Normal Time Overhead

Pfa

0.339%x10~2 0.760x10"

a. Swerling Case 1

b. Swerling

So/N
(dB)
10.00
19.20
10.40
10.82
19.80
11.00
11.20
11.40
11.60
11.80
12.00
12.20
12.40
12.62
12.80
13.00

P  Tp(dB)
3 g.s626
Pc
Pd Pd Pd w/o
(3/3) (2/3) (hyb) ssp
.16 .33 .28 .68
.18 .34 .30 .89
.18 .38 .32 .M
.20 .37 .34 .74
.21 .39 .36 .77
.23 .40 .38 .75
.24 .42 .40 .81
.2 .43 .41 .83
.27 .45 .43 .85
.29 .47 .45 .87
.30 .48 .47 .88
.32 .59 .43 .90
.33 .S .50 .91
.35 .83 .82 .92
.36 .54 .53 .93
.38 .55 .55 .94
Case 2
v
(3/3) (2/3)(hyb) Ssp
.04 .27 .18 .20
.04 .2 21 .23
.08 .31 .23 .2
.05 .33 .ZB .28
.06 .35 .29 .31
07 .37 .31 .34
07 .40 .38 37
.08 .42 .37 .40
.09 .44 .40 .44
10 .46 .43 .47
A1 .88 .45 .59
12 .50 .48 .54
43 .82 .81 .57
.14 .85 .53 .68
.15 .87 .S5 .83
.17 .88 .88 .68

137

Lps1(dB)

0.296

Pc
w/
sSSP
.69
72
.7S
77
.80
.82
.84
.86
.85
.5¢S
- B}

.82
.93
.84
.55

-
.SB

P
Ssp
.33
.37
g
.46
.50
.85
.53
.63
.67
.71
.75
.78
.81
.84
.87
.89

Lpsy (dB)

3.429




Table 4.4-6
Probability of Detection vs. SNR, 3-Slant,

Normal Time Overhead (cort'd)

¢. Swerling Case 3

So Pc Pc
chs/)N Pd(3/3) Pd(2/3) Pd(hyb) w/ossp w/ ssp
10.00 . 135801 .34830 .258888 53264 .68821
10.2 . 158332 .37020 .32681 631585 .68785
19.40 . 16848 .39135 .35342 .6B6%41 . 73537
18.62 .18444 41288 28011 . 70873 .77043
10.80 .20120 43411 -406354 . 74021 .80278
11.00 21873 -48553 - .432%5 .772E8 .83220 .
1.2 .23897 47702 .45805 .B0264 .85854 .
11.40 .25388 .439838 .48294 .830822 .B8209
11.60 .27540 .51984 .59718 .BES2 .90263
11.80 .29547 .54059 .E3072 .87770 .920z89
12.20 .31602 .S6118 .E3354 .89761 .93885
12.22 .33700 .88183 .57883 .91897 .894834
12.40 - .38332 .B014¢ .E3701 .950193 .95200
12.60 .37982 82183 .B6i768 .84315 .96778
12.860 LA 7 .84010 .83762 .95414 .97482
13.20 42383 .B3S887 .53883 .88334 .98065

d. Swerling Case 4

§3/N Pc Pc
(4B) Pd(3/3) Pd(2/3) Pd(hyb) w/o ssp w/ ssp
10.20  .04540  .31140 .23005 .2432 .4078E
10.20 05270 .33725 .26435 .27735 .AB264
10.40 .06087 .36390 .29%89 .313%7 .518%0
10.50 .06887 .39120 .33645 38287 .57526
16.80  .08003 .4190C .37321  .33375 .630S2
11.00 .0%108 44721 .4987% 43617 .B83585
11.20  .10317  .475B2  .44578 ,473gg L7332
11.40 .11629 .50409 . 45088 .52374 .778%1
11.69 . 13048 .83247 .51488 .88779 .819886
11.86  .14571° 580680 .54757 .§1127 .85578
12.00 .16197 .58834 .578%4 .B5361 .88683
12.20 .17924 51584 .598¢e3 .B9430 .91240
12.40 . 19748 .84208 63755 . 73287 .93357
12.60 .21B665% .66784 55481 .76883 -95054
12.80 .23568 .5§9273 .59075 .80219 .96385
13.00 . 25750 . 71683 71837 .B83243 .97406




Table 4.4-~6
Probability of Detection vs. SNR, 3-Slant,

Normal Time Overhead (cont'd)

e. Marcum (Non-Fluctuating Case)

So/N Pd_ pa Pd_ JIf, B9
(dB) (3/3)(2/3)(hyb) ssp ssp
19.20 .05 .36 ;28 .28 .58
19.20 N ] .40 .98 33 .58
10.40 .08 .44 .40 .38 .Bo
19.62 .10 .48 .48 .45 .74
10.80 .11 .83 .51 82 .81
11.00 .14 .58 857 .53 .86
11.20 .18 .52 Bi .83 .81
11.49 .18 B8 .88 .72 .94
11.60 23 .73 .70 .78 .87
11.80 .25 .75 .14 .83 .98
12.00 .30 .78 .78 .88 .88
12.20 .34 .32 .52 .91 1.00
12.49 .38 .85 .88 .94 1.00
.59 .42 .88 .88 .58 1.90
.E0 .47 .99 .59 .85 1.00
.00 .82 .92 .S5¢ .98 1.20

— - -
Lty
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also plotted in Figures 4.4-1 through 4.4-5. The measure of
improvement can be obtained by drawing a horizontal 1line
passing through the ordinate at 0.9 and comparing the differ-
ence in (§0/N) for cumulative detection probabilities with
and without SSP for each of the models. The improvement mea-
sured this way is 0.2 dB, 2.0 dB, and 0.9 dB for Swerling
case 1, case 2, and Marcum target models, respectively. A
larger improvement can be claimed if a similar comparison is
made between Pd(3/3) and Pd(2/3) or Pd(hyb) at a level of
0.32 probability or at any other level. Even a larger im-
provement can be claimed if the cumulative detection prob-

ability with SSP is compared against P4(3/3).

A set of computations were also made using the reduced
time overhead. The result for Swerling case 1 is given in
Table 4.4-7. The difference in detection performance be-
tween the two cumulative detection probabilities, one with
and the other without SSP, is almost identical to that based

on the normal time overhead as expected.
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Table 4.4-7 Probability of Detection vs. SNR, 3-Slant,
Reduced Time Overhead, Swerling Case 1

So/N ' . Pc Pc
(dB) Pd(3/3) Pd(2/3) Pd (hyb)w/o sspw/ ssp

8.5¢ .08526 .21382 14460  .41414 43747
g.7¢ .08375 .22743  .15027  .44602 LA7107
8.9¢ .10276 .28140  .17871 -.47827 .50430
g.1@ .11229 .25562 .19384  .510B6 .53868
9.30 .12254 .27012  .21157  .5428% .57213
g.60 .13290 . .28487  .22980  .574%7 .60524
9.70 .143%6 .29984  .24843  .60647 .63716
g.9@ .15558 .31500 .26738  .63725 .56828
t@.1@ .I187s@ .33032 .29853 .BB71Z .52822
10.30 .17996 .34577 .30S79 .69531 .72676
ie.5¢ .19285 .36132 .32598  .72548 .75383
18.70 .20814 37693  .34434  .74971 L1782
10.92 .21982 .39258 .38346 .77443  .80308
11.1@ .23385  .40823  .3824@  .7S778 . 2EIE
11.30 .24818 .42387  .40111 .81944  ,B45352
{1.52 .26284  .43%46  .41953  .83S%4 .86412
11.70  .27775 .45487  .4376S  .85805 .88105
11.90 .29288  .47038  .48342  .87482  .8SE3E
12.1@  .3@822 .46558 .47282 .8%Q40 .91019
2 30 .32373 .50083  .48966  .90434 .92237
2.8  .33837 1881 .5965@ .91687 .83328
12.7Q 3551 .53081 .§2276  .92807  .94287
v 12.80  .37082 .54521 .53862 .93802 .95130
13.1@ .38677 .55953  .S5409  .94682 . 85866
13.30  .40263 .57373 .58317 .95456 .96504
13.50 .41847 .58763  .58387 .96132  .970%SR
13.70  .43426 .5@127  .53818  .96721 .87530
13.80  .44897 61465  .B1212  .87231  .87835
14.19  .4BSS8 .62774  .82563 .9767@  .9828!1
14.39 .481@7 .64055  .B38BS  .88047 .98E73
14.50  .439641 .6S5308 .65173 .96363  .98820
14.70 .S51158 .6B530  .B5422 .98642  .880C7
14.90 .52657 .§7722 .B7636  .98874  .99000
15.10  .54134 .68884  .B8B16  .99083  .9S34S
15.30 .55530 .70016 .B3361  .88233  .89465
15.83 .§702! L71118  .71973 .9837@  .S9%Esd
15.70  .58428 .72187 .72153  .99484  .99648
1S.90  .59808 .73226 .73199 ,99578 .89714
16.19 .61160@ .74235  .74214 99657  .98788
16.30 .62485 .75214  .75198 .99721 .98814
16.50 .53780 .76163 .76150 .99774  .9S8S?
16.7@  .65045 .77082 .77972  .9%818  .99B80
16.9¢  .68281 .77972  .77964  .99853  ,99%04
17.1@  .67486 .78832  .78827 .9988T  .998I3
17.30  .BBESS .79665  .7966! .g99gec  .99838
17.50  .B980C .80470  .80468  .99924  .89851
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4.5 Detection Performance under Conventional J of K SSP

Finally, detection performance using conventional J of K
SSP is examined where K equals the number of scans L. This
is based on 2-slant, 2 of 2 post detection integration for
the reasons stated in Section 4.3. In addition to the
events introduced in Sections 4.3 and 4.4, the following two

are defined:

Dl4: detections occur in both of the 2 slants in the 2-
slant configuration

D15: event Dl4 occurs in J or more of the X=L scans

The single scan detection probability P(D14) is given by

P(D14) = Py(2/2) = D2, (4.5-1)

where Pa3 denotes the single slant detection probability and
the method for averaging with respect to target RCS fluc-
tuation is as described in Chapter 3.
The cumulative detection probability is
Py ./ ssp = P(DI3)
KKy K-i
= I () Pha-py®t. (4.5-2)

Results for the single scan detection probabilities P(D14),
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obtained by numerical integration, are listed in Table 4.5-1
and are plotted in Figure 4.5-1 for the 5 target models.
The cumulative detection probabilities P(D15) for J=2 and
J=3 with K=6 are shown in Table 4.5-2 for the same target
models. They are plotted in Figures 4.5-2 and 4.5-3 for J=2
and J=3, respectively. Recall from Section 4.3 that the
choice J=2 and K=6 results in increased false alarms beyond
an acceptable level. Therefore, comparison with the

baseline configuration is made for the case where J=3.

The above results are based on using the reduced time
overhead. Hence, they should be compared with the baseline
results which are also based on the reduced time overhead.
Because the integrated signal-to-noisé ratio is configura-
tion dependent (i.e., depends on the number of slants in a
beam dwell), it is necessary to introduce a reference range
so that a common reference point in signal-to-noise ratio
can be established for different configurations. The refer-
ence SNR for the baseline is 12.2 dB. This means that the
received §O/N from the reference target located at the ref-
erence range is 12.2 dB for the baseline. When the reduced
time overhead 1is assumed in the baseline, the number of
pulses for integration increases such that the received §0/N
from the reference target at the reference range increases

to 13.5 dB. In the 2-slant configuration, SNR per slant is
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Table 4.5-1 single Scan Probability of Detection vs. SNR,
2-Slant with a Reduced Time Overhead

Pfa ‘6 pf 3 M- N

L
1.197x10 3

. - r S
1.094x10 2 2 8.4-574 2.520

So/N(dB) SWI  SW2 SW3 SWA MARCUM

11,00 .31V 177 .328 .222 .3185
11.20 .326 .183 .348 .240 .354
11.40 .342 .202 .388 .28 .395
11.60 .358 .215 .391 .280 .438
11.80 .373 .229 .412 .,300 .483
12.80 .389 .243 .434 322 .5289
12.20 .405 .258 .45 .343 .875
12.40 .420 .272 .477 .365 .62}
12.60 .438 .287 .,489 .388 .BG%
12.80 .452 .302 .S520 .41 .710
13.00 .467 .318 .S542 .433 .751
13.20 .483 .333 .GB82 .455 .7%0
13.40 .4%8 .348 ,583 .478 .82S
13.60 .513 .364 .683 .50t .8S57
13.80 .528 .380 .B23 .523 .885
14.00 .S543 .38%6 .642 .545 .909
14,20 .557 .412 6Bl .S87 .930
14,40 .571 .427 .679 .888 .947
14.60 .585 .443 .6S6 .609 .961
14.80 .589 .452 713 .830 .97t
15.00 .B12 .474 730 .84% ,980
15.2 .626 .489 ,746 .B59 1.000
15.40 .63B .50 .761 .B637 1.000
15.60 .B51 .520 .775 .7eS 1.000
15.80 .663 .S535 ,789 .722 1.000
16.00 .675 .54% .802 .73% 1.000
16.20 .687 .564 .815 .755 1,000
16.40 .689 .578 ,827 .770 1.000
16.60 .710 .582 .838 .785 1.000
16.80 .720 .B0S .849 ,.793 1.000
17.00 .731 .B13 .853. .812 1.000
17.20 .741 .632 .868 .824 1.000
17.40 .75 .644 .877 .836 1.000
17.60 .760 .B57 .886 .847 1.000
17.80 .770 .6ES .8%4 858 1.000
18.00 .779 .681 .%01 .868 1,000
18.20 .787 .6S3 .%09 .877 1.000
18.42 .796 .704 915 .8BE 1.000
18.60 .804 .715 .921 .894 1.000
18.80 .81t .7325 .927 .902 1.000
19.00 .819 .736 .933 .909 1.000
19.20 .826 .746 .9838 .916 1.000
19.42 .833 .755 .,942 .S22 1.000
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Table 4.5-2 CUMULATIVE PROBABILITY OF DETECTION VS. SNR, 2-SLANT,
PULSE NORMAL WITH A REDUCED TIME OVERHEAD

_ 2 of 6 SSP 3 of 6 SSP
TE S SN2 3. S WROM S s s se Mo

8.00 .1452 .0280 .0970 .8258 .0141  .0244 .0018 .2122 .poisS .0008
8.20 .1703  .0340 .1162 .0328 .8195  .0304 .0024 .13  .9022 .0010
8.40 .1534 .e418 .1386 .0418 .0269  .0372 .0033 .0216 .0@33 .0018
8.60 .2188 .0502 .1643 .0517 .0378  .8457 .0043 .0285 .@04S .0028
8.80 .2472 .0508 .1934 .@556 .57  .9SE0 .0@SB .0372 .00 . 0045
3.00 .2761 .0722 .2259 .0808 .0689 .0675 .@076 .0482  .0091 .0071
3.20 .3054 .86l .2592 .0983 .@315 @802 .0101 .0607 .0126 .@i!i
3.40 3373  .1008 .2956 .1202 .1202  .9952 .0130 .9755 .@172 0172
-3692  .1182  .3348  .1428 .ISSE  .1115  .9167 .0940 .0227 .@26

9.80  .4935 .1365 .3766 .1709 .2003. .1305 .@211 .1i55 .9304 .@3SS
10.60, .4350 .1578 4205 .2026 .2520. .1494¢ .0267 .1406 .0402 .9579
18.2¢ .4708 .1798 .4637 .2353 .3127 .1725 .8330 .i673 .0516 .@83s
10.40 .5036 .2049 .5082 .2713 .381S  .1955 .0410 .1S83 .@§S5 1182
10.60. .5373 .2306 .5513 .3127 .4542  .2213  .e499 .2320 .0836 .161E
10.80  .S711  .2568 .5948 .3545 5334  .2483 .0S97 .2588 .1039 .2178
1.0 .6033 .2883 .6382 .3986 .6116  .2763 .0727 .3031 .1277 .283%
11.20 8342 31768 .6772  .4422 6834  .3052 .0858 .3483 .1538 .35:2
11.40 6857 .3496 .7154 .4896 .7589  .3368 .1014 3916 1956  .4453
11.60  .§9§7 .3815 .7525 .S535 .8212 .3691 .1182 .437@ .2196 .5341
11.80 7224 4156 .7849 .5798 .8733  .3998 .1377 .4806 .2557 .g239
12.80 .7492 .4484 8159 .6261 .91S5  .4329 .1585 .5259 .2974 .7@@s9
12.20 7744  .4843  .8437 6676 .9463  .4660 .1823 .S706  .3388 784
12.48  .7565 .5174 .8675 .7083 .9679  .4S71  .2057 .6122 .3834 8485
12.69. .8185 .S513 .8897 .7476 .5820  .S300 .2320 .G544 .4308 .§9s2
12.80  .8389 .S341 .9083 .7819 .9%07 .5625 .2594 .6330 .4764 .937o
13.00  .gse5 L6179 .9252 .8145 9954 5925 .2897 .73:13 .5239 .ggos
13.20  .8739  .6482 .9386 .8437 .9980 .6233 .3190 .7542 .5705 .979%
13.40  .8687 .6799 .9506 .8686 .9992 .6525 .3509 .7965 .5141 .98
13,60 .9023 .7065 .9604 .8916 .9937  .5803 .3814 .82¢9  .558) . gec:
13.80  .9147 .7343 .9667 .9107 .9999 .7072 .4143 .8511 .6983 .s978
14.00  .9259 .7604 .9752 .8274 1.0000 .7330 .4474 .8737 .7384 939
14.20° .9354 ,7849 .9907 .9416 1.8000 .7552 .4806 .8942 .7721  .gg9-
14.40 9440 .8064 .9850 .9532 1.0000 .7783 .S11S  .9116 .8938 .999%
14.60 9517 .8276 .8884  .3G30 1.9000 ' .7994 .5443 .92R3  .§330 1.0000
4.8  .9586  .8473  .9911  .§712 1.90e@ .819¢ .5766 .935¢ .@535 |.0000
5.0 .9543 .8643 .9933 .9774 1.0000 .8370 .G063 .9508 .8815 1.poeQ
15.28  .9698 .60 9950  .9827 1.0000 .8543 .§354 .9503 .S022 ) .p000Q
15.40  .974@ .B9S2  .9963  .9867 1.0000  .gE31  .GG56 .96579  .9187 1.0000
15.60 , -9780 .9083 .9972  .9999 1.0000 -8837  .6930  .974% .9334 1.0000
15.80° .9812 .9201 .9979 .9923 1.0000 .8962 ,7194 .37%4 .9455 1.0000
16.00  .9841 .9301 .9985 .9943 1.0000 .9979 .7431 .9836 .9563 1.0000
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higher because of one less slant into which the available
number of pulses must be divided and the reduction of the
number of fixed time overheads from 3 to 2. The net effect
- is that §0/N for the reference target at the reference range
increases to 16.0 dB. To make a performance comparison at a
specific cumulative detection probability level, e.g., at
0.9, the SNR margin for each of the competing configurations
is first determined. The margins are compared and the con-
figuration having the larger positive margin is superior by
an amount equal to the margin difference. Figure 4.5-4 il-

lustrates this procedure using some fictitious numbers.

configuration A configuration B
. T Pl N L |
% 0.9 == .g 0.9
e Y
[N [
e e
° margin § le—margin —
+ = 3.5 dB ¥ = 7.0 @B
0 0
0 o
o o
3 a
10 13.5 SO/N 9.0 16.0 SO/N
reference SNR : reference SNR

Configuration B is superior to configuration A by
marginlconn‘_ B~ ma:ginkonﬁ‘ AT 7.0 -3.5=35dB

Figure 4.5-4

Illustration of Performance Comparison Method
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The SNR margin for P_=0.9 for the baseline using reduced
time overhead is 1.3 dB for a Swerling case 1 target.
Similarly, for the conventional SSP with J=3, K=6, the SNR
margin is 0.1 dB as can be seen from Table 4.5-2. There-~
fore, the performance under the conventional 3 of 6 SSP is

inferior to the baseline performance by 1.2 dB!

A totally different conclusion can be drawn if the cumu-
lative detection probability under SSP is compared with the
single scan detection probability of the baseline. 1In the 3
of 6 SSP, P_=0.9 was reached at §0/N = 15.9 dB for a
Swerling case 1 target giving the margin of 0.1 dB. The
values of §0/N required to reach Pd = 0.9 ip a single scan
of the baseline for Swerling case 1 target is 23.0 dB. The
SNR margin is 13.5 less 23.0 dB, or -9.5 dB. The difference
between the two is 9.6 dB in favor of the 3 of 6 SSP. This
form of comparison is made by some investigators. Ob-

viously, this results in an erroneous conclusion.

The correct assessment!is that there is marginal improve-
ment with SSP. This conclusion confirms Barton's assertion
that the simple single scan approach is preferred even for a
stationary target when the scan depth used for correlation
is less than 6 [4]. Scan depth beyond 6 is impractical

in most realistic target environments where targets can pop

1. for the cases examined in this report
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in and out of terrain masking and move in and out of blind
velocity doppler cells or eclipsed range cells either inad-
vertently or intentionally by clever maneuvers. Target ma-
neuvers at 6~g level aﬁ a moderate speed would require a
large correlation window which results in false alarm rates
far greater than the baseline specification if the scan
depth used for correlation is larger than 6 as shown in Sec-

tion 4.3.
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CHAPTER 5
PERFORMANCE IMPROVEMENT WITH SCAN RATE REDUCTION AND

NONCOHERENT INTEGRATION

The radar range equation was introduced in Section 1.1.2.
When the transmitter power P, wavelength at the radar
ooperating frequency ), antenna gain G, target RCS ¢, number
of pulses for coherent integration NI and system losses are
specified, the SNR in the coherent processing interval (CPI)
for a target at range R is proportional to the ratio of the
energy received in a single pulse to the noise power density
multiplied by the number of pulses coherently integrated.
This is indicated by Egn. (1.1-10). Of course, the number of
pulses available for integration in a CPI and the number of
CPI's in a given antenna beam direction within a scan is
proportional to the dwell time of the antenna beam over a

point target. This in turn depends on the frame time T,.

To resolve the range ambiguity in a high PRF radar, mul-
tiple 1looks with distinct PRF's are required in each beanm
dwell in a scan. For the radar under consideration, 3 looks
are required for the bandwidth chosen. Because of the prac-
tical fixed time overhead associated with each slant, it is
not beneficial to form more than 3 slants for post detection

integration within the given scan rate constraint even
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though, in theory, 8 slants with 3 of 8 processing would
perform better. A performance comparison of 2 of 2 post de-
tection integration in a 2 slant configuration, and 2 of 3
and 3 of 3 processing in a 3 slant configuration showed that
the baseline 3 of 3 post detection integration was a good
choice when time overhead, scan rate constraint and range
resolution requirements were taken into account. An im-
provement on the order of 1 dB in equivalent signal-to-noise
ratio can be associated with 2 of 2 or 2 of 3 processing
when the respective cell false alarm probabilities are ad-
justed to yield the same level of system false alarms. How-
ever, the cost for a 3 fold range ambiguity with these pro-

cessing options must be weighted in the comparison.

Under a careful examination (see Chapter 4), scan-to-scan
processing also failed to show the performance improvement
that was hoped for. When the dwell time specification is
expressed in terms of the solid angle Q subtending the
search volume and the frame time TF needed to completely
cover the volume once, Egn. (l.1-14) shows that the SNR for
a target at range R is proportional to the power-aperture
product independent of the operating frequency. When the
power-aperture product is held fixed, it follows that the
variation of T

F for a given O is the only remaining option

for additional performance improvement.
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In Section 1.1.3, and in the introduction of Chapter 4,
the concept of cumulative detection probability P, is intro-
duced. Because of the loss associated with target RCS fluc-
tuations, it is explained there that it is more efficient
to achieve one or more detections with high probability by
using several scans rather than a single scan. According to
Barton [4], about 6 scans are optimum for detecting a fluc-
tuating target at P, = 0.9 if the pulses available in a scan
are noncoherently intggrated; DiFrahco and Rubin [2] show
that the number is 4 for Swerling case 1 and 2 or 3 for
Swerling case 3 when the available pulses in a scan are co-
herently integrated. These results assume that the change in
target range is negligible during the cumulative detection
period. In this chapter the optimum frame time needed to
maximize the range at which the specified P, is achieved for
a radar with a uniformly scanning antenna is determined for

a target approaching with a constant radial velocity.

First, the classical works by Mallett and Brennan [6] and
DiFranco and Rubin [2) are examined. Based on their re-
sults, a performance test with a slow scan rate (TF=50
seconds) was tried with the consequence that the range was
extended at which P, = 0.9. The equivalent sensitivity im-
provement was 7 to 8 dB. It is very significant that the

cumulative detection probability for a low observable target
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whose RCS is less than the reference target by 7-8 dB can be
detected at the same range as the reference target by in-
creasing the frame time. This is a result of a trade-off
between detection and track update. Their work is then ex-
tended in this chapter for a high PRF radar application
where the frame time affects both the SNR per slant and the

system false alarm rate.

Finally, because of the track update requirement, the ex-
tension of the frame time is limited to twice that of the
baseline. 3 and 6 slant configurations with either the bi-~
nary or noncoherent post detection integration are <then
analyzed. The performance relative to Pc = 0.9 is determined
for detecting a target within time durations of 60, 20, and
10 seconds. Performance, in terms of track update rate, for
targets both in the outer and inner range with respect to
the reference range is also examined. With noncoherent inte-
gration of 3 slants and slant-to-slant frequency agility,
significant improvement is achieved in terms of P, and track
update rate in the outer range. Compared to the baseline,
the track update rate suffers degradation in the inner

range.
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5.1 Scan Rate Optimization

The surveillance radar equation relating SNR to the radar
power-aperture product when the surveillance volume Q and

search frame time T_ are specified was presented in Section

F
1.1.2 as

S- PAAUTF
N 4R kT, NF, L 0

(1.1-14)

When the target approach velocity VR and the desired cumula-
tive detection probability Pc are specified instead of TF'
Egqn. (1.1-14) can be put into a form suitable for scan rate
optimization. The optimization is in the sense of
maximizing the range at which the specified P, is achieved.
Let Rz denote the range at which (S/N) becomes unity.
Then, setting (S/N) =1 and R = R, in Egn. (1.1-14) and
solving for R, gives

RY = P, Ao Tg
* “ 41 kI, NFy L {1

(5.1-1)

Let A denote the range interval traversed in TF by a tar-
get closing in with a constant radial velocity VR' The sce-

nario is shown in Figure 5.1-1.
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N 2 one e,

amal tive detectlont

c . e

Vr_— a proadblng b

K_radar Plétf orm VT, l l
R‘n Ph+ A %"‘ (L-1)A

Figqure 5.1-1

Detection Scenario of an Approaching Target with a constant
Radial Velocity

Note that

A=Vg Ty (5.1-2)

Expressing Tp in terms of Vp and A from Egn. (5.1-2) and
substituting into Eqn. (5.1-1) yields,
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4 P, Ao
R =(z KT, NF, L OV

A. (5.1-3)

Let R; be defined such that R, is expressed in terms of R, and A by
R & RjA . (5.1-4)
In terms of R,;, Eqn. (5.1-3) becomes

P, Ao
3 A
Ri~& T, NE, LV, (5.1-5)

Ri represents the fixed set of radar parameters (P,, A, kTy, NF,y, L, ) and

target characteristics (0, Vg).

For determining the cumulative detection probability, let
L denote the number of times a target will be illuminated
(i.e., the number of scans) during the period in which it is
to be detected one or more times before it reaches the range
Ry The first illumination of the target is assumed to occur
in the range ring extending from Rm+(L-l)A to Rm+LA. Let
Rm+(L-1)A+r denote the range to the target when it is first
illuminated where 0<r<Aa. By Eqn. (5.1-2), the target will
be at the range Rm+iA+r when it is illuminated while in the
range ring extending from Rm+iA to Rm+(i+1)A; 1=0,--, (L-1).
The position of the target during each scan when illuminated

is indicated in Figure 5.1-1.
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Let Pd(R) denote the probability of detecting the target
in a single scan at range R. The cumulative detection prob-
ability P, of detecting the target by the final range (Rm+r)

is given by

P, - 1-:‘21; [ 1-PyR_+r4i8)] . (5.1-6)

Assuming r is uniformly distributed between (R R +4), the
average cumulative detection probability P, can be written

P, =~ j‘“;‘;‘{ 1-HI[ 1-Py(Ry#ei&)] ) ar . (5.1-7)

Given that the power-aperture product of the radar is fixed,
for a specified target velocity VR and search angle Q, it is
sought to optimize the search frame time '1‘F so as to
maximize R,s the range by which the target is detected at
least once with a probability of 0.9.

Mallett and Brennan [6, 10] normalized all distances in

Egqn. (5.1-7) with respect to R,. For different values of ?c,

1l
they solved Eqn. (5.1-7) by numerical evaluation for all
possible pairs of A/R1 and Rm/Rl while letting L and, hance,
the outer range limit get large enough for each trial such

that Pd(Rm+r+(L-1)A) becomes negligibly small. For a given
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5&, the A/R; which corresponds to the maximum Rm/Rl is the
optimum A/Rl. Their result shows, for a given target veloc-
ity, that the larger the detection range <the 1longer the

frame time should be. Egn. (5.1-4) can be written as
A
R: = ARls '(’i{‘) R:
where

Ry = Ris/ny,=1 -

In general, the range R is related to Rz by

Rt (S/N),

RO AN

As a result, Rm can be expressed as

A\p4

R

4 -(-R-l) 1

3N
where (S/N)m is the SNR per scan for a target located at Rm‘
Assuming all the pulses in a beam dwell are coherently inte-
grated, Mallett and Brennan solved numerically for the opti-

6 for different

mum values of A/R:L and P\n/R1 for Pfa = 1x10
values of ic' The optimum values for 5& = 0.9 for a

Swerling case 1 target are

A
X, = 0.042

R = 0.155 .

R,
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Using these optimum values in Egqn. (5.1-2) gives TF as

_(A/RPR; _ (A/RYR,

Te Ve Ya(Ry/R)
0.27R_
= . 5.1-8
Va ( )
Typical Vvalues for Rm and VR are 200 nautical miles and

1600 knots, respectively. The optimum frame time according
to the above equation is then 121 seconds. This contrasts

with the baseline frame time of 10 seconds.

Because the above results suggest that an improvement is
possible by slowing down the scan rate, many detection per-
formance trade-off analyses are carried out in this investi-
gation using a frame time longer than that of the baseline
and either M of N binary or noncoherent post detection inte-
gration as options. The same fixed time overhead as in the
baseline is wused for each slant and the cell false alarm
rate was adjusted so that the system false alarm rate is the
same as in the baseline. One sample run with the frame time
close to 50 seconds and a post detection processing consist-
ing of 6 slants of signals noncoherently integrated is
shown in Figures 5.1-2 and 5.1-3 for the single scan and cu-
mulative detection probabilities, respectively. In this
simulation, V, = Mach 1 was assumed and the maximum range

R
where the cumulative detection process began was 400 nauti
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cal miles. The time limit of 1 minute to achieve the cumula-
tive detection probability was ignored in this case. The
cumulative detection probability comparison indicates that a
performance improvement equivalent to an increase of ap-
proximately 7 to 8 dB SNR is achieved by slowing down the
scan rate by a factor of approximately 5. Iflii were the
only performance criterion, the longer frame time would be

very beneficial.

DiFranco and Rubin [2] followed a slightly different ap-
proach. For a given Rm' they solved for values of Aand L
which minimize the power-aperture product. To make the solu-
tion to Egqn. (5.1-7) more tractable, they let r = 4/2 and
§i = R, +4/2 + iA. It follows that Pg(R +r+iad) = P,(R,).

They also normalized A such that

VT
d "29&',;, ._7*;{-:? ) (5.1-9)

Then, carrying out the integration in Egn. (5.1-7), ic can

be approximated as

L-1
?c > ] - illo(l-Pd(Ri))

=1- f‘go‘[ 1-Py { Ryl14a2i+D)] } ] . (5.1-10)




Swerling [2, 13] has shown that the detection probability
for noncoherent integration of an incoherent pulse train

can be approximately expressed as

exp(-x) ; for Swerling case 1
P; =
(142x) exp(-2x) ; for Swerling case 3

where
X = f(Ph, N,)/'Stp

and X, is the expected peak SNR per pulse. Let R, be the range at which

x =1 = f(P,,, Nl)/(-g‘p)z- Then, from the radar range equation

-(%)"

),

and

%, = ) = (P M)

Consequently, X can be expressed as

x = f(Pg,, Np/Rp '(%2 ) ! =(iz)

With the above identity, Py is approximately given by
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exp [- (—R% ) 4] ; for Swerling case 1

(5.1-11)

o
1t

[l+2 (—R%)‘] exp[-z (’l_{'Rz)‘] ; for Swerling case 3 .

DiFranco and Rubin substitute Egqn. (5.1-11]) into Eqn.

(5.1-10) to obtain the following expression for ?c:

L

) 1-i§; {1-[m2 (—E‘“)‘](l-rd(Zid))‘]l-l |

exp(-/ (-l;;m ) 4( 1+d(2i+1))*] } (5.1-12)

where /=]l and (=2 applies to Swerling case 1 and 3, respectively.

Note that Egqn. (l1.1-14) can be rearranged to obtain an

expression for the power-aperture product. Substituting

4, N. 2
%(P:»Nx)(%] () -k,(%)‘, T,.-ﬁ-%';—d, and R =R

into Egn. (l1.1-14), where k1 is a constant, and rearranging

for PpA yields




ky(Ry/R, ) *47R} KT NF L0
= o(2R_d/ Vg)

[ k121rkToNF0LﬂVRan:| ( R, )4
od Ry

P,A

) .
= kz———-'(Rz/}"‘) (5.1-13)

where all of the terms in coefficient k2 are constants that

must be specified for a search radar.

For a specified Ry, DiFranco and Rubin find values of d
and L which satisfy Eqn. (5.1-12) for a specified ?C and

also minimize PAA in Eqn. (5.1-13). Their steps are:

1. For a specified ?é, select values of 4 and L, L=1, 2,
3, =--, and solve Egqn. (5.1-12) for Rz/Rm‘ A plot of Rz/Rm'
as a function of d, is generated for each integer value of

L.

2. For each value of L, solve Egn. (5.1-13) for PAA using
pairs of 4@ and Rz/Rm as obtained from step 1. A plot of P A

as a function of 4 is then plotted for each value of L.

3. Select that pair of values for L an d which yields the
minimum value of PAA.
Minimizing the power-aperture product for a specified R,

is equivalent to maximizing Ry for a specified
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power-aperture product. It follows that the values of L and
d which yield a minimum power-aperture product for a
specified Ry also result in a maximum value of Rm when
that minimum power-aperture is specified. The system frame
time is then given by
2R, d

Te = . 5.1-14

F* TV, ( )
Their results show that the approximate optimum frame
time and the number of scans to achieve the required ?é are

such that the cumulative detection zone is equal to Rm’ In
particular,

LVgTy = R, . (5.1-15)

That is, the detection zone is equal to the minimum detec-
tion range. Thus, once the optimum L is known, the optimum
TF follows. From the work of DiFranco and Rubin the optimum

L for different ﬁ; levels are given in Table 5.1-1.

Table 5.1-1 Optimum L for the P, Level Specified

Pc=0.9 Pc=O.95 Pc=0.99
Swerling 1 4 5 6
Swerling 3 2 3 4
222




Returning to the previous example where Fc=0.9, Rm=200

nautical miles and Vp=1600 knots, the optimum Tp becomes

R (200)(3600)
TF =-v;i = (16(X))(4) = [12.5 seconds .

This is almost the same result as obtained earlier using the

Mallett and Brennan approach.

Both the Mallett and Brennan and DiFranco and Rubin teams
assume that there is no radar line of sight 1limit and,
therefore, L can be as large as necessary. Also, without
stating it, the radar is assumed to be operating in a 1low
PRF mode so that the time overhead, assﬁming it is entirely
due to the round trip transit time for the radar wave with
respect to the target at the maximum range of interest,
does not affect the division of the available radar energy

into M number of slants and L number of scans.

In the next section, scan rate optimization is carried
out for a high PRF radar. To effectively utilize the
various slants needed to resolve the range ambiguity associ-
ated with the high PRF radar under consideration, post de-
tection processing, either an M of N binary integration
where M>3 or a noncoherent integration where N>3 is required

in each scan. Unlike the low PRF radar studied by others,
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in a high PRF radar, there is a fixed time overhead associ-
ated with each of the N slants and L scans which includes
one round trip transit time for the entire pulse group in a
slant. This affects in a nonlinear way the SNR and cell
false alarm probability and complicates determination of the
optimum frame time. Imposing a line of sight limitation or
time constraint in achieving the stated P, further compli-

cates the problemn.
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5.2 Scan Rate Optimization for a High PRF Radar

In this Section, scan rate optimization for a high PRF
radar is carried out by extending the work of the Mallett
and Brennan tean. The extension is in the form of taking
into account the effect of a fixed tihe overhead on the co-
herent integration gain and the cell false alarm probability
allocation as a function of antenna scan rate. As the scan
rate decreases, it will be shown that the variation in de-
tection performance due to the fixed time overhead can be
ignored once the coherent integration gain and the cell
false alarm probﬁbility alloc;tion in a multi-slant system
are properly assigned taking into account the effect of the
fixed time overhead for the particular post detection inte-
gration chosen at its maximum antenna scan rate assumed.
The procedures for computing integration gain, allocating
the false alarm probability, and translating these to the
single scan detection probability after the post detection

integration are developed in Chapters 2 and 3.

To take into account the effect of the fixed time over-
head, the following reference parameters for the baseline

system are introduced:

'I‘,,.(J = frame time in the baseline
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Vg = 450 knots
0

Ao = TFOVRO .

The optimization is carried out for the 3 of 3 post detec-
tion integration scheme as used in the baseline. Let Ty
denote the fixed time overhead. 1In the baseline with

Ty = 10 seconds
0

and
Ty =052 T, ,

where Tm is the time duration of a modulation period, an in-
crease in dwell time proportional to an increase in TFo by

a factor of cy results in an increase in SNR per slant by

the ratio, C,, as given by

(¢ Ta/ T Ty,
“ CO-Ty/T )T,

Consequently, Eqn. (1.1-14) is modified to read

l’A A aTF
(N) = ¢ 1 : .
4w R* kT, NF, L0

As Dbefore, 1let Rz denote the range at which (S/N) becomes

unity. Recalling that TFo = Ab/v o’ it follows that

P, Ao
4 A 3
R = 3 TakT, NF, L @1 Vg, S0 =% Rife

(cl'TH/ Tm)

- Rfm A, . (5.2-1)
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Substitution of TH/Tm = 0.52 in the above equation yields

Ry =Ri——a— (&) (5.2-2)
Since A = ¢,4q, Eqn. (5.1-4) can be written as
¢4
R} = R} e84 = RI (=R ) (5.1-4)

Note that Egn. (5.2-2) differs from Egn. (5.1-4) only by the

factor of

c; (1-0.52/¢,
T}'(—_ETF_ )'

Hence, the range at which SNR becomes unity is extended by
the factor of c2/clf

To correct for the cell false alarm probability change as
a result of an increased dwell time, note that, once the
cell false alarm probability corresponding to the system
false alarm rate specification has been determined, the cell
false alarm probability is affected only by the time utili-

zation factor K, according to Egn. (2.5-25). The effect of

1
this change on Rz depends on the particular post detection

integration chosen.

The detection probability after post detection integra-
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tion for Swerling case 1 and 3 targets is given in Section

3.2 as

Py = [oPAMN) p(Sy/N)A(Sy/N) . (3.2-7)

This is in the same form as Eqn. (3.2-12), the single slant
detection probability before post detection integration for
Swerling case 2 and 4 targets. For Swerling case 2, Pgi is

given by

Inp

t ) X (3.2-13)
1STN);

Py = xp (

Therefore, for a Swerling case 1 target we try for the

purpose of approximating Egqn. (3.2-7) an equation of the

form
In P,
Py =exp | —— (5.2-3a)
C{1HS5¢/N)})
where Pfa' the cell false alarm probability after 3 of 3

post detection integration, is given by
Pfs - p:

and (§O/N) is the signal-to-noise ratio per CPI if all the
pulses are received through the antenna beam at its peak

gain. Taking the natural logarithm of Egn. (5.2-3a) and re-
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arranging yields
S, ] hxp:
c4[ 1 +(R) “TP, (5.2-3b)

The value of c, can be obtained from Egn. (5.2-3b) and a
pdint from a Pd versus (§°/N) plot for a given value of Pg-
Referring to Figure 3.3-3, the following values for two
points, each for two different values of Pg, are read off
from the plots of Pd versus (§0/N) for Swerling case 1 after

3 of 3 post detection integration .

(Sg/N) € Bq=0.3 (So/N) € Pg=0.5
e pf-7.6x10-4 15.85 (12.00 dB) 28.31 (14.52 dB)
e pf-7.6x10'5 20.61 (13.14 dB) 36.64 (15.64 dB)

4

For pf-7.6x10- , substitution of (§,/N)=15.85 and P4=0.3

d
into Eqn. (5.2-3b) gives c4=1.062. Inserting this value of

c, and (QO/N)-za.al into Eqn. (5.2-3a) yields P4=0.5. This

agrees with the plot of Figure 3.3-3 which is obtained by

numerical integration. Trying still other values of (§0/N)

4

for pf-7.6x10' reveals that Eqn. (5.2-3a) is an excellent

approximation for Py as a function of (54/N) and Pe- How-
ever, a different value of C, is required for each value of
5

Pe- The value of c, corresponding to pf=7.6x10- is 1.0935.
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Since what is sought is an approximate equation for in-
terpolation between two values of (§6/N) at a given value of
Py due to a change in Pgr an expression that is slightly
different from Eqgn. (5.2-3b) which is less sensitive to

changes in p,. is tried. The equation is of the form:
£

In P,

Py ~ ¢ exp[ (5.2-3¢)
14(S4/N)

Associating points from the plots of Figure 3.3-3 with the

corresponding terms in Egn. (5.2-3c), the value of cg cor-

5 at a Pd level of

0.3 becomes 1.078 and 1.119, respectively. Using the aver-

responding to pf-7.6x10'4 and pf=7.6xlo'

age of these two values for ;5 in Egqn. (5.2-3¢c) is found to
give accurate results felating changes in Pe to the corre-
sponding changes in (§0/N) for a fixed value of Py over a
range of change in Pe by a factor of 10, This relation-

ship can be expressed as

In (p, )3 In (p,)°
(p,,) ] - ¢ exp Pey

1 + (54/N), 1 + (5¢/N),

Py = ¢ exp[

)

Dividing both sides of the above equation by Cg and taking a

natural logarithm gives

la(p, )* ‘l In(p, )*
14{5¢/N), _' 1(Sy/N),

or
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3
In(p )" In P, 1(Sy/N),  (S¢/N),
$*InpP,_ = =
In(p )" " Tt 1qsyN), (SN,

, for (So/N), (So/N)»>1 . (5.2-3)

Note from Eqn. (2.5~25) that the ratio of false alarm prob-
abilities after 3 of 3 post detection integration equals the
inverse of the ratio of time utilization factors. Since the
optimization is to determine how much to slow down the an-
tenna scan rate with respect to the scan rate in the
baseline, Pe must be reduced to maintain the same system
false alarm rate as the scan rate is reduced and, therefore,
the time utilization factor is increased.

In the vicinity of (§0/N)=12.2 dB and pf=7.6x10-4, a de-
crease in Ps by a factor of 10 results in a corresponding
decrease in the detection probability. This is equivalent to

4 and reducing SNR by 1.2 dB, a

maintaining p, at 7.6x10
factor of approximately 1.32 as can be seen in Figure 3.3-3.
Another way of putting it is that an increase in SNR by a
factor of 1.32 is required to maintain the Pd level the same
as before. This can be verified by substituting these Pe

values into Egn. (5.2-3).

As mentioned previously, the ratio of false alarm prob-

abilities after 3 of 3 post detection integration equals the
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inverse of the ratio of time utilization factors. Note that

c is equal to the ratio of time utilization factors. Sub-

2
stitution of (l/cz) for (Pfaz/Pfa1) in Eqn. (5.2-3) yields

In P, By/N), .
n &, Pra)  (Sy/N)

cg . (5.2-4)

For values of c, equal to 1.1 and 10, the values of c, are
1.098 and 1.975, respectively. The corresponding values of

c, are 0.996 and 0.969. These values are the ratios by which

3
SNR is effectively reduced. Or equivalently, SNR must be
increased by the inverse of these values to maintain the
original level of Py- Thus, it is seen that once the cell
false alarm probability is determined for the particular
post detection integration according to the procedure estab-
lished in Section 2.4, the false alarm probability change as
a consequence of an increase in dwell time has a small ef-
fect on the SNR. Hence, as a first approximation, it can be
ignored in the scan rate optimization using 3 of 3 post de-~
tection integration. The effect of time overhead on other

post detection integration can be determined in the same

way.
When the dwell time is increased by a large factor, the

time overhead becomes a negligible portion of the modulation

period. Returning to Egn. (5.2-2), note that
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im 1-0.52/c,

—oaE ) =20

e 1o
Its impact on Rz is (2.08)1/4 = 1.2 in the limit. This rep-
resents a 20 % increase in the detection range. However, the
maximization peaks are very broad. As a result, this factor
can be dropped for simplicity from Egqn. (5.2-1). Even so,
the effect of time overhead in the multi-slant processing is
included in evaluation of the detection and false alarm

probabilities for a specified post detection integration.

With respect to Egqn. (5.1-10) for ﬁc’ all range units are
normalized by R, which includes all fixed radar and target
parameters. Note that Pd(§b/N) can be converted to P,(R/R,)

by using the relationship

RS
L ByYN)

Using Egqn. (5.1-4) R/Rz can be converted to R/R1 ornce A/Rl

is specified:
4 4
®) &)@

and
l .
(SO/N) 1

Ry 4 1
(‘R‘ ) “TB/R) ~

3
Hence, when R= Rl'
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Sy/N), =g -

The above conversion allows the computation of P; as a
function of the normalized range, R/R,. A set of values for
Pd(R/Rl) is computed according to the procedure outlined in
Chapter 3 for the normalized range increment, A/Rl, ranging
from 0.01 to 0.1l. ?c(R/Rl) is then computed for each value
of the normalized range increment chosen. From a set of
these values, the optimum A/Rl and the corresponding Rm/R1

are selected for §e=0.9.

These optimum values for §c=o.9 are listed in Table 5.2-1

for Swerling case 1 through 4 and Marcum target models.

Table 5.2-1
Optimum Values A/R1 and the Corresponding Values of

Rm/R1 - 3 of 3 Post Detection Integration

F = . - -10
Swerling case Marcum
1 2 3 4 nonfluctuating
A/R1 0.050 0.058 0.060 0.080 0.078
Rm/Rl 0.157 0.132 0.171 0.171 0.223
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The optimum values derived by Mallett and Brennan are

listed in Table 5.2-2 for §E=0.9 for easy comparison.

Table 5,.,2-2

Optimum Values A/R, and the Corresponding Values of
Rm/Rl ﬁy Mallett and Brennan

- _ . _ -6
Pc = 0.9; Pfa = 1xX10
Swerling case Marcum
1 2 3 4 nonfluctuating
A/Rl 0.042 —— 0.053 —— 0.080
Rm/Rl 0.155 —— 0.169 —— 0.196

Note that the referenced values assume a single slant system
for which computation of Py is fairly straightforward. 1It
should be observed that in a single slant system there is no
difference between a Swerling case 1 and a Swerling case 2
(nor a Swerling case 3 and a Swerling case 4). Hence, their
result does not show values for Swerling cases 2 and 4.
Still, the optimum values determined here for a system with
a particular post detection integration are found to be very
Close to the corresponding values found by Mallett and
Brennan even though they are evaluated at different false
alarm probabilities. Therefore, performance improvement

based on cumulative detection probability at a level of 0.9
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for a radially approaching target with a speed of Mach 1 can
be 7-8 dB as shown by an example in Section 5.1 when the an-
tenna scan rate is reduced by a factor of approximately 5.
In this example, note that the one minute time constraint is
not observed. Instead, the outer boundary of the cumulative

detection zone is taken as 400 nautical miles.
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5.3 Detection Probability with Noncoherent Integration in

Lieu of Binary Integration

The Bayes 1likelihood ratio test for detecting targets
based‘on noncoherent integration of multiple observations in
white Gaussian noise is discussed in Radar Detection by
DiFranco and Rubin [2]. Specific forms of integral expres-}
sions for the probabilities of detection resulting from bi-
nomial post detection integration were derived and presented
in Chapter 3. The integral expressions describing the prob-
ability of false alarm and probabilities of detection under
noncoherent integration are summarized below following the

work by Difranco and Rubin.

The optimum receiver structﬁre in the region of small
signal-to-noise ratio is the matched filter for each pulse
followed by a square law detector and a noncoherent summer
or a video integrator for all four Swerling cases and Marcum
target models. Let Y denote the sufficient statistic. The
sufficient statistic, Y, is one half the sum of the square

of the envelop voltage T

. ‘
Y = 2 (1/2)r§ (5.3-1)

where N is the number of observation samples noncoherently
integrated. For the kth doppler cell, note that the DFT co-
efficient X(k) which arises from an NI-point FFT constitutes

a single sample for the noncoherent integration.
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In the absence of the signal, the probability density of
Y under hypothesis 0 (target absent) assumes the form,

p(Y|o) =

{v“'l e~Y / (N-1)1, Y20
A (5.3-2)

0, Y<0.

This is a chi-square density with 2N degrees of freedom.

It arises because Y is the sum of 2N statistically indepen-
dent squared Gaussian random variables. That is, it is the
sum of N pairs of squared in~phase and quadrature Gaussian
noise components each having zero mean and unit variance
(i.e., normalized). Thus, the probability of false alarm is

given by
%

Pey = 1 -j}"‘l e ¥/ (N-1)1dy = 1 - I(Yy/AN, N-1). (5.3-3)

where Y, is the threshold and I(u,s) is the incomplete gamma

function defined by

Uy+s
I(u,s) =j; (e”V vS/s!)dv.

The probability of detection is given by

[ ]
Pyq fj; p(Y|1)dy (5.3-4)

where p(Y|1) is the probability density of Y for ¥>0 under
hypothesis 1 (target present) with peak SNR per pulse, ffp'
The relationship of the peak SNR to the envelope amplitude
A, and the probability densities of A and %% for Marcum and

Swerling target models were given in Section 2.6.
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The probability density of Y, p(Y|1), and the probability
of detection for Marcum (nonfluctuating) and Swerling target
models are:

Marcunm o uctuat

for Y>0

P(Y[1) = (2¥/N%) (N=1)/2 ~Y-NZp/2 Iy-1 (VNZY),  (5.3-5)

%
- (N-1)/2 _-Y-N %/2
1 j; (2Y/N;qp) e IN_l(l\IZN%Y)dY

=1-Tg (2N-1,N-1,JN5PP/2). (5.3-6)

Pyq

In-q1 (%) is the modified Bessel function of the first kind,

order N-1 and TB(m,n,r) is the incomplete Toronto function,

B
Tg(m,n,r) = 2N+l e'rtﬁ gR-n ot I, (2rt)dt.

for ¥Y>0

(1 + 1/NE /2)N2 oY/ (1+NZy/2)
oz
Y
* If =
‘fNTl(l-i—l/NQp/z)

p(¥|1) =

,» N=2], (5.3-7)
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Py = 1 - I(Y/AN-1,N-2) + (1+1/NQ;/2)N°1 e~V / (1+NZp/2)

°I[Yb/(Vﬁ:T(1+1/N§L/2)),N-Z].

for Y>0

p(¥|1) = 1/(+Z 2N/ (-1 1y Y/ (1+2Zy2)

%+ %)
Py =1- f "?x“"l e X)/(N-1) !dx

4

= 1 - I[Y/({N(1+%/2)),N-1].

we ase

for ¥>0

> N=-2 —_
or|n) = RS vy (1)

(1+Ni"p/4)2

-I[(Y/(1+1/Ni¥/4)dﬁ:i),N-2]

=~ N-1
N-2) (1+1/N%_/4 =
_ J(N-2) (1+1/ ?g/_)A o-Y/ (14N F/4)

(1+N§%/4)2

N-1
Y
-I[(Y/(1+1/N%;/4)dﬁ-1),N-z] +

(5.3-8)

(5.3-9)

(5.3-10)
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(N-1)2(1+Nﬁ;/4)2,
(5.3-11)




»
%

Swerling 4
for Y>0
| ¢N-1 e'Y/(1+§?“) N! g((_ 41/ (147 4))k
p(Y|1l) = — s +
(1+%,/4) %" w TP ¥
v
. (5.3-12)

k! (N+k-1) ! (N-k) !,

I[(Yb/(l-ﬁ;/4)VN+k),N+k-1]
Pg = 1 - N/(1+Z /0N s @0k

k! (N-Kk) ! .
(5.3-13)

Numerical integration of above equations is used in Sec-
tion 5.4 to determine the threshold and probabilities of de-

tection under noncoherent integration.
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5.4 Probabilities of Detection with Slower Scan Rate

In this section, M of N binary post detection integration
is compared with noncoherent integration (NCI) along with a
2 to 1 increase in dwell time as a means for detection en-
hancement. The 2 to 1 increase in dwell time is achieved by
reducing the antenna scan rate by a factor of 2. Enhancement
options examined include slant-to-slant frequency agility
and back-to-back antennas. When used, the back-to-back an-
tennas are assumed to be switched to the single receiver/
transmitter one at a time every 180 degree rotation of the
rotodome so that the azimuth coverage is reduced from 360 to
180 degrees and the same 180 degree azimuth sector is cov-
ered with twice the dwell time. It was shown in Section 5.1
and 5.2 that scan rate optimization called for a consider-
ably slower scan rate. Reduction éf the scan rate by more
than a factor of 2, however, is prevented by track update
considerations for near-in targets. For post detection inte-
gration, it is well known that noncoherent integration is
more efficient than binary integration. Only recent advances
in signal processing hardware make it feasible to implement

NCI in a high PRF radar.

The single scan detection probabilities for 3 of 3, and 3

of 6 post detection binary integration, and noncoherent in-
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tegration with 3 and 6 observation samples, all within the
same false alarm time constraints but with the antenna scan
rate at 3 rpm, are first determined for the Swerling case
1, 2, and Marcum target models. The fal;e alarm constraint
is such that the system false alarm rate is 2 or less in a
10 second interval on the average. It should be noted that
Swerling case 2 results apply to Swerling case 1 when
slant-to-slant frequency agility is used in the radar op-
eration. Under this condition, Swerling case 1 is trans-
formed to Swerling case 2. The single scan detection prob-
abilities for the four processing options are plotted for
the Swerling case 1, 2 and Marcum target models in Figures
5.4-1 through 5.4-4. The numerical results with the same
processing options for Swerling case 1 and 2 along with the
baseline performance are also shown in Table 5.4-1. For gen-
erating these results, an average beam shape loss is used
for all cases, first, to facilitate the detection probabil-
ity evaluation with NCI where equal signal-to-noise ratios
are assumed for all samples, and second, to generate results

on the same basis for all processing options considered.

The same reference target located at the reference range,
as was used previously, is employed in this chapter for es-
tablishing the reference SNR for the particular processing

configuration. For the baseline 3-slant configuration with a
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Table S.4-1 Single Scan Detection Probabilities ¢ J rpm Aatezna Scan Rate with Normal Yime Overhead

ttetteseifeference SIR = 17.18B4444440dd-cnccncmcncaccccnacn Reference SER = 12.2 dB----mevecenene-

-------- 3 MC1---~---33333333] (F 3Is3333% ¢ ICI semeneesd OF §o--=== Jof 3 /6
— (baseline)
(So/B)  SW-1 SN-2 Si-1 SN-2 Si-1 S¥-2 Si-1 58-2 Si-1 SN-2

$.00 0.128 0074  0.080  0.011 0.3 0.3%6  0.269  0.18%  0.08¢  0.012
8.20  0.133  0.086  0.099  0.013 034  0.411  0.284 0212 0.103 Q.01
$.40  0.151  0.089  0.108  0.015 0370  0.448  0.300 0.2  0.113  0.018
§.60  0.164  0.113  0.119  0.018 0386 0485  0.316  0.261  0.123  0.019
8.0 © 0177 0128 0.130  0.021  0.403 0522 0332 .28 0.1 0022
9.00 0190 o.u§  0.141 0.02¢ 0.419 0583 0343 0015 0.4 0.026
9.20 0.204  0.164  0.153  0.028 0435  0.504  0.364 0340  0.158  0.029
9.40 0.218  0.183  0.165  0.032 0.451  0.628 0380 0373 0.170  0.034
9.60 0,232  0.204  0.173  0.036 0.467  0.662  0.387  0.403  0.183  0.0%8
9.80 0.4 0.226  0.181  0.041 0483  0.8%¢ 0413 0433  0.1%  0.043

10.00 0.262 0.249 0.204 0.046 0.438 0724 0.423  0.483 0.210  0.049
1020 0.21 0.213 0.218 0.082 0514 0753 L4485 0434 0.2 0.055
10.40 0.29 0.298 0.232 0.058 0.529  0.1%0  0.461 0.52¢  0.238  0.062
10.60  0.308 0.32¢ 0.247 0.066 0.544  0.805  0.4M7 0.55¢  0.283  0.068
10.80 0.325 0.351 0.262 0.073 0.558  0.828  0.432  0.584  0.268 0.076
11,00 0.341 0.3n 0.217 0.081 0.574  0.343  0.508  0.813 0.283 0.085
11.20 0.3%8 0.405 0.292 0.000 0.588  0.868  0.523  0.641 0.2  0.093
11.40 0.314 0.432 0.308 0.099 0.602  0.885  0.538 0.668 0.3 0.103
1160 0390 0.460 0.3u 0.108 0.6  0.300  0.553  0.6%4  0.330  0.113
11.80  0.406  0.488  0.340 0.119  0.82% 0914 0.568  0.719  0.346  0.123
12.00 0.483 0.515 0.356 0.130  0.842  0.926  0.582 0.7143 0.362  0.134
1220 0.4 0.5 0.3 0.141 _0.65%  0.937  0.5%6  0.765  0.378 0.146
12.40 0.43% 0.569  0.382 0.153 | 0.667  0.946  0.610  0.786  0.3%¢  0.158
12.60 0.471 0.39% 0.404 0.165 | 0.679  0.955  0.623  0.806  0.410  0.170
12.80 0.487 0.621 0.420 0.178 | 0.6%1  0.962  0.53 0.82¢ 0.426  0.183
13.00 0.502 0.645  0.436 0.131 ] 0.702  0.963  0.54%  0.342 0.2  0.197
13.20 0517 0.689 0.452 0.205 | 0.714  0.973  0.662  0.858  0.458  0.210
13.40 0.533 0.692 0.467 0.219 | 0724 0.978  0.674  0.872 0.473  0.225
13.60  0.548 0.714 0.483 0.234 | 0.735 0981  0.6%6  0.886  0.489  0.239
13.80 0.562  0.138 0.499 0.248 | 0.745  0.985  0.697  0.898  0.5M4 0.254
4.0 057 0.755 0.514 0.263 | 0.785  0.987  0.708  0.309  0.520 0.269
4.0 0.391 0.774  0.529 0.218 | 0.764  0.9%0  0.720  0.913  0.835  0.285
1440 0.805 0.792 0.54 0.28¢ | 0.714  0.3%1 M0 0.929 0.543  0.300
1460  0.618 0.808 0.558 0.310 § 0.782  0.3%3 0.0 0.937 0.564  0.316
1480 0.632 0.825 0.573 0.326 | 0.781  0.9%4¢  0.750  0.9485 0.578 0.332
15.00 0.645 0.840  0.587 0.342 | 0.799  0.995  0.760  0.951 0.532  0.348
15.20  0.8%7 0.354 0.501 0.358 | 0.807  0.3%6 0.768 0.9 0.606  0.364
15.40 0.§70 0.367 0.514 0.374 | 0.815  0.897  0.778  0.983 0.619  0.380
15.60  0.582 0.879 0.628 0.3%0 | 0.823  0.338  0.7%7 0.967 0.633  0.3%
15.80 0.693 ~ 0.890 0.641 0.407 | 0.830  0.993  0.7%  0.971 0.645  0.413
16.00 0.705 6.300  0.653 0.420 | 0.8 0998 0.4 0975  0.658  0.429
16.20  0.716 0.909 0.566 0.39 | 0.844 0938  0.812  0.978  0.670  0.443
16.40 0.726 0.918 0.678 0.455 | 0.850 0939  ¢0.818  0.381 0.682  0.461
16.60 0.117 0.926 0.689 0.471 | 0.85¢  0.9%9  0.821  0.3%4 0.634  0.475
16.30 0.7¢ 0.933 0.701 0.486 | 0.862  0.939 03U 0.986  0.705  0.492
17.00 0.787 0.340 0.712 0.502 | 0.363  0.99%  0.340  0.988 0.716  0.507
1710 01680 0.943  0.717 0.508
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Table 5.4-1
Single Scan Detection Probabilities € 3 rpa Inteana Scan Rate with Normal Time Overhead (cont’d)

+eeeedteleference SER = 17.1dBet44ddddtocccocmcccnacccaceas Reference SER = 12.2 dB--vvvmccecaucnan
I K1 338332333 0F Jss33se 6ICI  eeeeeee- 301 6---em- Jofd /6
- - (baseline)
(Se/B)  SW-1 Si-2 Si-1 SN-2 Si-1 si-2 Si-1 Su-2 -1 SW-2

11,20 8.765  0.346 0.723 0.517 0013 1000 0847 0990  0.721  0.51)
1740 0.1 0.982 0.7133 0.532  0.819 1000  0.853  0.991  0.731 (.53
17.60 014 0.951 0.743 0.541 038 1000 0.859  0.992  0.T4T  0.553
11,80 0.7  0.9%1 0.783 0.562  0.%89 1000  0.865  0.993  0.757  0.567
18.00  0.801 0.968 0.763 0.576  0.883  1.000 0871  0.9%  0.766  0.581
18.20  0.808  0.969 0.172  0.530  0.898 1000 0.876  0.995  0.175  0.595
18,40 0.817 0.372 0.781 0.504  0.362 1000 0.381  0.9%6  0.784  0.609
18.60  0.82¢  0.97% 0.789 0.618  0.%06 1,000 0.3%  0.9%  0.793  0.623
13.80  0.831 0.978 0.798 0.631  0.910  1.000  0.881  0.997T  0.801  0.63
19.00  0.838 0.980 0.806 0.644 0314 1000 0.396  0.997  0.803  Q.649
19.20  0.845  0.3%) 0.514 0.657  9.918 1000 0.30  0.998  0.816  0.661
19.40  0.831 0.984 0.821 0.668  0.922  1.000 0.905 0.998  0.82¢  0.673
19.60  0.8%7 0.986 0.828 0.681  0.925  1.000  0.909  0.998  0.831  0.685
19.80 0.363  0.388 0.835 0.693  0.928  1.000  0.913  0.999  0.838  0.897
20.00  0.863 0.9 0.842 0.704  0.931  1.000 0916  0.999  0.845  0.708
20.20  0.8%¢ 0.9%0 0.849 0.715  0.93¢ 1000  0.920 0.399  0.851  0.7119
20.40 0.8%0  0.992 0.88% 0726 0.337  1.000  0.923  0.9%9  0.857  0.7129
20.60  0.885 0.992 0.861 0.736  0.340  1.000  0.927 0.999  0.863  0.740
20,30  0.8%0  0.9% 0.867 0.746  9.942 1000 0930  0.393  0.869  0.750
21.00 0.8%4 0.9%4 0.872 0.756  0.945  1.000 0.933  1.000 0.87¢  0.759
21,20 0.899 0.935 0.877 0.765  0.341 1000 0.936 1.000 0.879  0.769
21,40 0.%03  0.995 0.383 0.775  4.350 1080  0.939  1.000 0.88¢  0.778
21.60  0.907 0.996 0.888 0.783  0.952  1.000  0.941  1.000 0.839  0.787
.8 08 0.996 0.892 0.792 0954  1.000  0.944. 1.000 0.894  0.7%5
2.00  0.913 0.997 0.897 0.200 0.356  1.000 0.946  1.000  0.8%8  0.803
2.0 0.919 0.997 0.901 0.808  0.958  1.000  0.949 1,000 0.903 0.811
240 0.922 0.998 0.90% 0.816  0.960  1.000  0.951  1.000  0.907  0.818
2.60 0.925 0.998 0.310 0.823  0.%62  1.000  0.853  1.000  0.911  0.826
2.8 0.929 0.998 0.913 0.831  0.3%63  1.000  0.9%  1.000 0.315  0.833
3.0 0.932 0.998 0.917 0.831 0965  1.080  0.987 1.000  0.918  0.840
.20 0.93 0.998 0.921 0.4  0.966  1.000  0.959  1.000 0.922  0.846
.40 0.938  0.999 0.3 0.851  0.38  1.000 0.361  1.000  0.925  0.383
23.60 0.940  0.999 0.927 0.857 0.6  1.000 0962  1.000  0.929  0.859
2.8 0.3 0.999 0.930 0.863  0.371  1.000  0.964  1.000  0.932  0.865
.00 0.345 0.999 0.933 0.868  9.5712  1.000  0.966  1.000  0.935  0.870
.20 0.948 0.999 0.936 0.874  0.973  1.000 0.967 1.000  0.937  0.87%
2040 0.950  0.999 0.939 0.879  0.914 1000  0.969  1.000  0.940  0.881
.60 0.952 0.999 0.342 0.38¢  0.376  1.000  0.970  1.000  0.343  0.886
0.80 0.9 0.999 0.944 0.889 0977  1.000  0.971  1.000  0.945  0.891
25.00 0.9% 1.000 0.947 0.3%4  0.978  1.000 0.973  1.000  0.948  0.895
25.20  0.958 1.000 0.949 0898  6.979 1000  0.974  1.000  0.950  0.500
5.0 0.960 1.000 0.951 0.03  0.380 1000 0.975 1,000  0.952 - 0.904
25.60  0.962 1.000 0.953 0.7  0.%81  1.000  0.976  1.000  0.95  0.908
25.80 0.964 1.000 0.955 0.911  0.%81 1000 0.97T7  1.000 0.956  0.912

26.00 0.96% 1.000 0.937 0.915  0.982 1.000 0.978 1.000  0.958 0.916
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scan rate of 6 rpm, this results in a single slant reference
SNR, (§O/N)o, of 12.2 dB. Note that the reference SNR for
a 6-slant configuration with a scan rate of 3 rpm is also
12.2 dB. For a 3-slant configuration with a séan rate of 3
rpm, (§0/N)o equals 17.1 dB. The increase in (§O/N)o when
the scan rate is reduced by a factor of 2 is more than 3 dB
because the number of pulses integrated increases without an

increase in the time overhead.

The analysis result shows that a considerable improvement
is possible in the single scan detection probability with
NCI and slant-to-slant frequency agility when they are ac-
companied with an increased dwell time. Frequency agility
renders a rapid fluctuation to Swerling case 1 (and case 3)
targets such that they behave as Swerling case 2 (or case 4)
targets. Single scan detection probability with NCI im-
proves rapidly for Swerling case 2 targets in the high SNR
region. Increased dwell time, as a consequence of slower
scan rate, places the returned signal from the reference
target at the reference range in the higher SNR region.
Since a different processing configuration gives rise to a
different level of SNR per slant for a given target situa-
tion, the reference SNR for each configuration is used to

identify one point in the P4 versus (EO/N) curve to a
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particular detection range, namely, the reference range of
the reference target. Then, the remaining values of (§0/N)
can be converted to the corresponding range using the radar

range equation.

Improvements in single scan detection probabilities with
an increase in dwell time are, of course, expected since SNR
is proportional to the dwell time. Whether the improvement
in single scan detection probability with slower revisit
rates leads to improvement in cumulative detection probabil-
ity and track update rates is the real question. Since a
slower scan rate results in fewer opportunities for the cu-
mulative detection process and track updates, a back-to-back
antenna configuration is also included aé an option which is
used to cover a reduced surveillance sector of 180 degree
azimuth. In the following investigation, the target is as-
sumed to be an aircraft whose RCS fluctuates according to
the Swerling case 1 model. Results for other target models

can be determined in the same manner.

The improvement in cumulative detection performance is
determined on the basis of achieving Pc = 0.9 in 60, 20, and
10 seconds using the single scan detection probabilities

shown in Table 5.4~1. The track update performance is deter-
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mined on the basis of the average number of 'hits' in a 5
minute time interval. It will be shown that the slower scan
rate improves performance in both cumulative detection prob-
ability and track update rate for the outer ranges at the
expense of a poorer track update rate in the inner ranges
when compared to the result with normal scan rate used in

the baseline. This is because update rate can never exceed

the antenna scan rate.

Assuming that target range closure is negligible during
the interval over which a specified value of Pc is achieveqd,

P, is given by
L
P, = 1-(1-P,)

where L is the number of revisits to or scans by the target
in question during the cumulative detection interval. It
follows that the necessary level of Pd to achieve a

specified value for P, can be expressed as

Pd = 1-exp[(1/L)ln(1-Pc)] . (5.4-1)

The required Pd that yields Pc = 0.9 is calculated from
Eqn. (5.4-1) as a function of L and is 1listed in Table
5.4-2.
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Table 5.4-2

Required Py to achieve P, = 0.9 in L scans

. Pa____
1l 0.900
2 0.683
3 0.535
4 0.437
5 0.369
6 0..318

The improvement in dB is the differential margin in SNR
relative to the baseline for the reference target located at
the reference range for each processing option. By defini-
tion, the SNR margin is the amount by which the reference
SNR is higher than the SNR required to yield a level of Py
that will translate to the specified P,. This method of per-

formance comparison was also used in Section 4.5. The

concept is illustrated in Figure 4.5-4.

At an antenna scan rate of 3 rpm, the number of scans in

20 and 60 seconds are 1 and 3, respectively. These values of
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L require Pd levels of 0.9 and 0.535, respectively, to yield
P, = 0.9 in 20 and 60 seconds. As an illustration of the
margin computation, it is seen from Table 5.4-1 under 3 NCI
for Swerlihg case 2 (which would apply to Swerling case 1
when slant-to-slant frequency agility is used) that the re-
quired (§°/N) for Py = 0.9 and Py = 0.535 is 16.0 dB and
12.1 dB. These translate to SNR margins relative to the ref-
erence SNR of 17.1-16.0=1.1 dB and 17.1-12.1=5.0 dB. 1In the
baseline with 3 of 3 post detection integration and with the
antenna scan rate of 6 rpm, the required Pd for Pc = 0.9 in
20 and 60 seconds is 0.683 and 0.318, respectively, with the
corresponding (§°/N) requirement of 16.4 dB and 11.4 dB. The
SNR margin in each case is 12.2-16.4=-4.2 dB and
12.2-11.4=0.8 dB. By comparing these margins to the margins
under 3 NCI with frequency agility at an antenna scan rate
of 3 rpm, the improvement is seen to be 5.3 dB and 4.2 dB,

respectively, for Pc = 0.9 in 20 and 60 seconds.

Performance improvements obtained in this manner for sev-
eral signal processing options considered for a Swerling
case 1 target are summarized in Table 5.4-3. The options in-
clude with and without frequency agility and with and with-
out back-to-back antennas. Note that the degree of improve-

ment depends on the performance criterion adopted.
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Table 5.4-3

summary of Performance Improvement with the Antenna
Scan Rate of 3 rpm for a Swerling Case 1 Target

a. antenna scan rate of 3 rpm (360° coverage in azimuth)

P, in 60 sec. P, in 20 sec.
req'd Py 0.535 0.90
SNR(AB) margin gain* SNR(dB) margin gain*
(w/o frequency agility)
3 NCI 13.4 .7 2.9 21.2 -4.1 0.1
3 0of 3 14.3 2.8 2.0 22.1 -5.0 -=0.8
3 0of 6 11.4 0.8 0.0 19.2 -7.0 -=2.8
6 NCI 10.5 1.7 0.9 18.4 -6.2 =2.0
(w/ frequency agility) -
3 NCI 12.1 5.0 4.2 16.0 1.1 5.3
3 of 3 17.4 =-0.3 -1l.1 25.4 -8.3 =4.1
3 of 6 10.5 1.7 0.9 13.8 -1.6 2.6
6 NCI 8.9 3.3 2.5 11.6 0.6 4.8
b. anteBna scan rate of 3 rpm with a back-to-back antenna
(180~ coverage in azimuth)
P in 60 sec. P in 20 sec.
req'd Pd 0.535 0.683
SNR(dAB) margin gain* SNR(dB) margin gainx*
(w/o frequency agilility)
3 NCI 10.8 6.3 5.5 15.5 1.6 5.8
3 of 3 11.5 5.6 4.8 16.4 0.7 4.9
3 0of 6 8.6 3.6 2.8 13.5 -1.5 2.7
6 NCI 8.0 4.2 3.4 12.7 -0.5 3.7
(w/ frequency agilility)
3 NCI 10.6 6.5 5.7 13.3 3.8 8.0
3 of 3 14. 2.4 1.6 19.6 -2.5 1.7
3 of 6 9.0 3.2 2.4 11.5 0.7 4.9
6 NCI 7.8 4.4 3.6 9.7 2.5 6.7
c. antenna scan rate at 6 rpm
P, in 60 sec. P in 20 sec.
req'd Py 0.318 0.683
SNR(dB) margin gain SNR(dB) margin gain
3 of 3 11.4 0.8 ref l16.4 -4.2 ref

*compared to the corresponding SNR margin with 3 of 3 pro-
cessing @ antenna scan rate of 6 rpm
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If the criterion is the track update rate instead, which
is defined as the blip scan ratio multiplied by the number
of scans in a specified time interval, improvement figures
different from those shown in Table 5.4-3 result. For ex-
ample, at the range- where Pc = 0.9 is reached, the average
number of track updates (hits) in 5 minutes for P, intervals
of 20 and 60 seconds at the antenna scan rate of 3 rpm are
13.5 and 8, respectively. The corresponding average numbers
of track updates at the antenna scan rate of 6 rpm are 20.5

and 9.5.

To yield the same level of track update rate at 6 rpm, a
P4 level of only 0.45 and 0.27 is required for P, intervals
of 20 and 60 seconds, respectively. Corresponding values of
the required (§O/N) are 13.1 dB and 10.8 dB. Again, by com-
paring SNR margins, the improvement figure is determined to
be 2.0 dB and 3.6 dB for Pc intervals of 20 and 60 seconds,
respectively. Even though the improvement figures are
smaller, it is significant that the track update rate is im-
proved at this range by slowing down the scan rate. This im-
provement increases at ranges further out and decreases at
ranges closer in. This subject is further discussed at the

end of the Chapter.
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Now assume that the azimuth coverage is reduced from 360
to 180 degrees. With a back-to-back antenna configuration
where the receiver/transmitter set is switched to one or the
other antenna every 180 degrees of the rotodome rotation se
that the same 180 degree azimuth sector is covered by both
antennas, the revisit rate at 3 rpm for the covered sector
is the same as that provided by a single antenna at a scan
rate of 6 rpm. Therefore, the performance improvement mea-
sure based on Pc is the same as that based on the average
number of hits. Following the same procedures as above, the
equivalent dB improvement figures with frequency agility and
3 NCI with the back-to-back antenna are 8.0 dB and 5.7 dB

based on 0.9 Pc in 20 and 60 seconds, respectively.

These results demonstrate the efficiency of NCI in the
region of high SNR or high probability of detection rendered
by the slower scan rate when used in conjunction with fre-
quency agility. The improvement would be even greater had
the highly desirable track update rate of once every 10 sec-

onds been required. This would require a single scan P of

d
0.9. With two back-to-back antennas rotating at 3 rpm and
slant-to-slant frequency agility, this level of performance
is achievable at a range equal to 1.06(R0) for a 3 NCI and

at 0.96(Ro) for a 6~NCI where (Ro) denotes the reference
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range. This results from the‘ the direct conversion of
one-fourth power of the SNR margin available at (Ro), which
are 1.1 dB and -0.6 dB, respectively, for 3 NCI and 6 NCI.
In che baseline 3 of 3 post detection integration, Py = 0.9
is rarely reached due to range eclipsing even when a target
is at a close range. Ignoring range eclipsing for ease of
comparison of other effects on detection performance, the
SNR margin for 0.9 Py at the reference range is =-9.9 dB.

Thus, the equivalent dB improvement is 11.0 dB and 9.3 dB

for 3 NCI and 6 NCI, respectively.

To facilitate the performance comparison, Pc values for
20 and 60 seconds are plotted in Figures 5.4~5 anc¢ 5.4-6,
respectively, as a function of the mean normalized SNR, x,
defined as (§0/N) divided by the respective (§0/N)o. This
eliminates the need for computing SNR margins. Comparison
on the kasis of track update rate can be generated
similarly. Let u denote the average number of hits in a
specified time interval, say 5 minutes. Since there are 15
and 3¢ antenna scans in a 5 minute interval for 3 and 6 rpm
antenna scan rates, respectively, u as a function of the
normalized SNR, x, is given by
(15)[Pd(x)(§o/N\°]: antenna scan rate at 3 rpm

u(x) =
(30)[Pd(x)(§6/N)o]: antenna scan rate at 6 rpm,
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The plots of the average number of track updates in a 5
minute interval with 3-NCI at 3 rpm for Swerling case 1 and
2 targets together with the same in the baseline 3 of 3 pro-
cessing at 6 rpm for Swerling case 1 targets are shown in
Figure 5.4-7. These figures clearly demonstrate that not
only is the Pc range extended with a slower scan rate but

the track update rate is also improved in the outer range.
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CHAPTER 6
SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK

6.1 Summary

This report presents results of an investigation
into the effectiveness of (a) scan-to-scan processing and
(b) scan rate reduction in improving the detection perfor-
mance of an existing airborne surveillance radar subjected
to power-aperture product and system false alarm con-
straints. As background, considerations involved in a per-
formance comparison of the baseline and modified radar con-
figurations were clearly explained where the primary
performance criterion was the cumulative detection probabil-
ity. Following an introduction in Chapter 1 of the radar
system under investigation together with basic concepts as-
sociated with the detection problem in a long range airborne
surveillance radar, those parameters which go through
changes with the system modification were identified and
methods for quantifying those parameters were developed in
Chapter 2. These included the number of coherent processing
intervals in a beam dwell given the search frame time, the
number of available pulses in a coherent processing inter-
val, beam shape loss, false alarm probability allocation,
and target models. It was shown how two different approaches
to false alarm calculations, one proposed by Marcum and the

other by Barton and Skolnik, could be used to relate cell
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false alarm to system false alarm in a complex high PRF ra-

‘dar.

The baseline radar configuration was then analyzed in
Chapter 3. Probability density functions for the sufficient
statistic appearing in the likelihood ratio test were devel-
oped. Expressions for the detection probabilities after M of
N post detection binary integration were derived. These re-
sults were then averaged with respect to the assumed target
radar cross section fluctuations to obtain the expected de-
tection probabilities for five different target models.
Graphs of detection probability versus signal-to-noise ratio

were generated and presented for the five target models.

The scan-to-scan processing (SSP) was dealt with on a
theoretical basis (as opposed to simulation) in Chapter -4.
The baseline radar configuration was modified by incorporat-
ing two different versions of scan-to-scan processing: One
was a conventional J of K SSP while the other was a modified
J of K SSP. The philosophy is to lower the threshold to en-
able detection of extremely weak targets or extend the de-
tection range for conventional targets. This results in a
drastic increase of false alarms. These are suppressed by
requiring J detections in a K scan wide correlation window
associated with L total scans. The size of the correlation
window was determined by imposing limits consistent with

realistic target maneuvers, An analysis was carried out to
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relate cell false alarm probability to system false alarm
rate when scan-to-scan processing is incorporated. The cor-
responding cumulative detection probabilities are derived.
It is shown, contrary to widely held optimistic projections,
that only a very marginal improvement results over the cumu-

lative detection probability of the baseline radar.

With a power-aperture product constraint, the only ad-
justable system parameter available for improving perfor-
mance 1is the scan rate over the surveillance volume. In
Chapter 5 previous work on scan rate optimization for a 1low
PRF radar is reviewed. The results suggested that improve-
ment could be achieved by slowing down the scan rate for a
given surveillance volume. An example was worked out in the
investigation to show that slowing down the scan rate in the
baseline radar could result in significant improvement. As
a result, the previous scan rate optimization for the 1low
PRF radar was extended to the high PRF case. Because of
track update requirements, scan rate reduction was 1limited
to a factor of two compared to what was specified for the
baseline radar. Both binary M of N and noncoherent post de-
tection integration were compared in conjunction with the
reduced scan rate in the analysis. Noncoherent post detec-
tion integration combined with a reduced scan rate was shown
to give rise to significant detection performance improve-

ment.
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6.2 Recommendations for Future Work

The main body of this investigationdealt with detection
of Swerling and Marcum target models embedded in white
Gaussian noise. This is a problem encountered in a well de-
signed high PRF radar where the majority of targets of in-
terest fall in the clutter free doppler zone. The solution
to this problem is generally assumed in the literature to be
well known. However, the problems posed and the concepts and
methodolegy developed in this investigation while critical
in addressing the issues facing modern surveillance radar

problems today, cannot be readily found in the literature.

One of the major areas of radar research activity over
the past decade appears to center on optimum detection in
non-Gaussian interference, the principal source of the
non-Gaussian interference being clutter. Frequently, the in-
stantaneous power of radar returns from land clutter is
characterized as lognormal [10] or Weibull distributed [16],
while that from sea clutter is K-distributed ([17]. This led
to a flurry of research activity into detection schemes
based on stochastic estimation, which is an extension of the
optimum detection theory [18)], or Locally Optimum Detector
(LOD) [19] or Asymptotically Optimum Detector [20] on the
one hand, and adaptive clutter cancelling techniques on the

other [21, 22].
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While these topics are interesting, detection approaches
under non-Gaussian clutter may be irrelevant to a majority
of the detection problems in clutter. It is indeed true
that the aggregate of returned clutter power observed over
the entire surveillance volume can assume lognormal,
Weibull, or K-distributed density. However, the conditional
density given the local mean of the clutter power taken from
one radar resolution cell over the time period during which
each detection decision is made within a radar scan is
likely to be either exponential or Rician. The assumption of
exponential or Rician density in turn depends on whether or
not the entire sequence of radar pulses jg transmitted at

the same carrier frequency [23].

Describing the probability density of the entire set of
returned clutter power in a surveillance sector as an inte-
gral of the conditional probability density of the clutter
given its local mean multiplied by the probability density
of the mean using the mean as the variable of integration
(see Eqn. 6.2~-1, p276) is based on the point of view arising
from the nonstationary characterization of clutter (24, 25,
26, 27). Not only does this approach provide a means to ex-
plain a more complex form of clutter distribution, but more
importantly it allows the correlation property of the clut-
ter to be correctly modeled. Stating it differently, the
voltages associated with the in-phase and quadrature compo-

nents of the clutter returns during a beam dwell from a
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given range-azimuth resolution cell 1is 1likely to be
Gaussian, albeit nonzero mean, when the radar resolution
cell intersects the ground patch which contains many elemen-
tal clutter cells. An elemental clutter cell is that clut-
ter patch bounded by its spatial correlation distance. Re-
turns from elemental cells of a ground patch may be also
Weibull [23] or Lognormal distributed [28]. However, when
the radar resolution cell encompasses many elemental cells,
the central limit theorem evidently is at work to render the
distribution of the received clutter power to be exponential
or Rician conditioned on its mean taking a certain value.
The assumption of multiple elemental cells will fail to holad
eventually as the radar resolution cell is made sufficiently
small as in a synthetic aperture radar (SAR) used for ground
imaging. Some authors report that the Gaussian assumption

also fails to hold at very low grazing angles.

Thus, for the majority of practical situations the detec-
tion problems in Weibull, lognormal, or K-distributed clut-
ter usually break down to problems of detection in Rayleigh
or Rician clutter (for the envelope voltage after combining
the in-phase and quadrature components) during each decision
interval ([25]. The detection decision is made with an adap-
tive threshold that yields the desired constant false alarm
rate throughout the surveillance volume. The expected detec-
tion probability over the entire surveillance volume is ob-

tained by averaging the local detection results over the
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variation of the clutter mean. Note that this process is
exactly the same as the procedure for obtaining the expected
detection probability after post detection integration of
Swerling case 1 and 3 targets (slowly varying with respect
to a CPI) in white Gaussian noise. This process was ex-
plained in Chaptar 3. Totally irrelevant detection predic-
tions would result for Swerling case 1 and 3 target models
T when a method appropriate for Swerling case 2 and 4 were ap-
plied to these models. Similarly, an optimum detector under
non-Gaussian interference produces an incorrect result when

the local interference over the detection decision interval

is Gaussian.

A preliminary analysis of clutter samples collected with
a high PRF radar is presented in Section 6.2.1. The result
tends to support the nonstationary characterization approach
to clutter. 1In particular, the mean and variance of the
clutter samples are found to vary significantly from one

range cell to the next.

As for the adaptive clutter canceller, which is an adap-
tive implementation of an optimum filter in the sense that
it maximizes the output signal-to-clutter-plus-noise ratio,
its predicted performance in comparison to that of a conven-
tional processor (MTI followed by a windowed FFT) is usu-
ally based on artificially simple assumptions which may be

irrelevant to the real situation encountered. Much of the

271




recent adaptive clutter canceller work which is of sig-
nificance is contained in MTI RADAR edited by Schleher [21]
and Optimized RADAR PROCESSORS by Farina [22]. Simplistic

assumptions typically made are:

1. The interference is a zero mean Gaussian random pro-
cess.

2. The interference has an exponential autocorrelation
function and the covariance matrix can be normalized
such that it is a positive definite hermitian matrix

with unity diagonal elements.

3. The number of pulses used for processing is small

(usually 8 or 16 pulses).

4. Adjacent range gate samples are independent and iden-
tically distributed so that the signal free sample
covariance matrix can be obtained by averaging a num-

ber of adjacent range gate samples.

While assumptions 1 and 2 are reasonable for an adaptive
array design in the presence of sidelobe clutter interference
[29], the mean of mainbeam clutter samples over a CPI is
hardly ever zero, and the sample correlation matrix does not
have identical diagonal elements (i.e., nonstationary). As-
sumption 3 is valid for a very simple low PRF radar. In a me-
dium or high PRF radar the number of pulses integrated is

much larger which, when coupled with the fact that the
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clutter correlation matrix is almost singular (i.e., clutter
returns are highly correlated between pulse-to-pulse), makes
it difficult to invert or decompose the correlation matrix of
a large dimension. As for assumption 4, the clutter returns
in adjacent range cell samples taken with a high PRF radar
show that they are not identically distributed. In fact, the
mean and variance of the clutter samples exhibit significant
variations from one range cell to the next so that they can-
not be used to form a sample correlation matrix. This |is
also reported to be true for a low PRF radar. the sample
correlation matrix can be formed from temporal samples in the
same range cell. The signal free. correlation matrix would be

difficult to obtain by this means, however.

A performance comparison of different clutter cancellers
is given in Secton 6.2.2. An infinite impulse response (IIR)
filter giving shaped velocity response, a finite impulse re-
sponse (FIR) filter using binomial coefficients as its
weights and and an FIR filter that derives its weights from
the eigen vector corresponding to the minimum eigen value of
the clutter correlation matrix are compared using actual high
PRF clutter data as inputs. No one approach was found to be

superior to the others tried.

In view of the lack of noticeable improvement in perfor-
mance of the optimum linear clutter canceller with real clut-

ter data, it seems reasonable to consider an option alternate
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to the classical approach examined. This alternate approach
views the clutter as an a priori unknown, but deterministic,
process. Observation of a time sequence of clutter returns
reveals a slow monotonic variation of clutter amplitude over
a CPI. There is no random jump in amplitude or phase from
pulse to pulse. One possible explanation for this phenomenon
can be that the mainbeam clutter is dominated by a few
discrete scatterers whose signal amplitudes are slowly
modulated by the antenna scanning and platform motion. A
smooth curve fit to, or a low pass replica of, the clutter
amplitude and phase variation over a CPI can be made after
reception of the data and subtracted from the original data,
which in effect adaptively takes out a majority of the unde-
sirable clutter returns leaving uncancelled target signals
separated from the clutter doppler. Limited trials with col-
lected clutter data show good results when the smooth curve
chosen for curve tit is a third or fourth degree polynomia’.

The topics discussed briefly in this section require further

studies.

6.2.1 Clutter Model

The result of a preliminary investigation of the distri-
bution of clutter power received through a high PRF airborne
pulse doppler radar is presented in this section. The char-
acteristics of the radar used to collect the data and the

sample size are described in Table 6.2~1.
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Table 6.2-1 Radar Characteristics and Clutter Sample Size

no. of pulses per range cell 175
no. of range cells per azimuth sample a0t
no. of azimuth samples 4

size of terrain covered

range 50-210 nmi
cross range 7.6 nmi at 210 nmi range
waveform high PRF
receiver bandwidth 1.25 MHz
carrier frequency S-band

Since the radar employs a high PRF wavaeform, the clutter
returns from over 200 nautical mile range swath are folded
into one approximately 3 nautical mile range interval which
is divided into some 40 or so range cells on the average. In
addition, these returns are modulated by the antenna beam
shape and the two way range attenuation on the one hand, and
by the antenna scanning and the platform motion on the
other. The platform is assumed to move at a speed of 360
knots at the altitude of 30,000 feet. Of the range cells
available, only samples from every other range cell are used

for analysis.

The objective of the investigation is to determine how
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well the actual received clutter sample can be fit to the
nonstationary clutter model. The conventional view giving
rise to Weibull or lognormal distribution for clutter is
based on representing the clutter process as a wide sense
stationary random process. An alternate view, which is the
nonstationary characterization adopted in this investigation,
is modeling the clutter process as a time varying process
whose parameters are stationary within a radar detection de-

cision interval within a beam dwell.

This nonstationary characterization is described math-
ematically as follows: Let the instantaneous scattered clut-
ter power, which is proportional to the mean radar cross
section of the clutter patch or the clutter reflectivity, be
denoted by a random variable z, and the local mean of z be
denoted by another random variable u. Let pl(zlu) and p2(u)
denote the conditional density of z given u and the prob-
ability density of u, respectively. The probability density
pl( ) corresponds to the short term or a local dgnsity for a
scattered clutter power while pz( ) corresponds to the
variation of u over time or space (entire terrain in the

surveillance volume).
The unconditioned density of z is given by

p(z) = [ p;(zlu)p,(u)du. (6.2-1)
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Lewinski [24] has proposed gamma densities for the density

functions of both z and u which are expressed as

(z ) (k)kzk-l exp(-kz/u) (6.2-2)
p.(z{u) = o=
! Tx) (K
and
- (m) ™™ exp (-mu/u) 6.2-3)
p,(u) = - .2-
2 T(m) ()™

where overbar signifies the expected value, () 1is the

gamma function, and k and m are the inverse of the normal-
ized variance of z and u (the square of the mean divided by
the variance), respectively. The parameter k is also known
as the shape factor while u is known as the scale factor.

Substituting the above expressions into Eqn. (6.2-1) yields

2’(km)(km)/z (z)(k+m-2)/2

- 1/2
= 4mkz/u

where Kp(-) is the modified Bessel function of second kind

of order p. When k = 1, p(z) becomes the density of the
K-distribution and when k = 1 and m = 1/2, p(z) becomes a

Weibull density with Weibull parameter equal to 1/2 [24].
The gamma density encompasses a large class of density

functions. When k = 1, it represent the exponential density

used in the Swerling case 1 and 2 models (see Section 2.6).
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When k > 1, it represents the Rician density [29]. Actually,
it is slightly different from the Rician density commonly
used in the literature [10, 21, 23] for representing the re-

flected clutter power which is given as

p(z) = [1l+a)/u] exp(-a-(l+a)z/u] Io(2[a(1+a)z/u]tézg )
where a 1is the DC to AC power ratio and I (: ) 1is the

modified Bessel function of the first kind of order zero.

The random variable u, the mean of z, is best obtained by
taking the mean of the sample values taken from multiple
carrier frequencies with the frequency spacing equal to or
larger than the waveform bandwidth. Since a single frequency
is used in the sample at hand, the average value of 175
pulses for each range cell is taken as the mean for that
range cell. It is assumed that a sufficient platform motion
and antenna scan occurred during the duration of the pulse

group to give a representative estimate of the mean.

The approximate density function for P, (u) is obtained by
finding the value of m that gives a good fit between the
plot of Eqn. (6.2-3) (after multiplication by a number equal
to the area under the histogram) and the histogram of the
mean of each range cell in the test set. The approximate
density function for p(z) is similarly obtained by finding
the value of k that gives a good fit between the plot of
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Eqn. (6.2-4) and the histogram of individual pulse returns
from all range-azimuth samples in the test set treated as a
single population. Note that knowing the value of k also

gives the conditional probability density function py(2fu).

It is convenient for plotting purposes to use the normal-
ized gamma density according to the variable transformation,

u + u/u =y. Then, p(y) is given by

™ y* ! exp(-my)
p(y) = . (6.2-6)
I (m)

The histogram of the normalized mean value of the clutter,
u/u, 1is shown in figure 6.2-1. The plots of Egn. (6.2-6)
versus y = u/d for m = 1, and 2 are shown in Figure 6.2-2.
It can be seen that the gamma density with m = 2 is a éood
fit to the histogram although the computed m is close to 1.
The  histogram of individual pulse returns from all
range-azimuth samples in the test set, when matched to the
plot of a scaled version of Eqn. (6.2-4) represeenting p(z)
would allow the determination of k and pl(z/u). Unfortu-
nately, a way of plotting Eqn. (6.2-4) for a non-integer or-
der of the modified Bessel function of the second kind was
not found within the time constraint of this investigation
and the k value needed for pl(zlu) was not established by

this means.

An alternate approach was taken based on the assumption
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Figure 6.2-2
Scaled Gamma Density Function with Shape Factor of 1 and 2

281




that the distribution of returns in each range cell all be-
long to a gamma density. The distribution of clutter returns
in individual range cells should reflect the conditional
density. Histograms of the normalized values of clutter re-
turns for a few range cells are shown in Figures 6.2-3 (a)
through (4d). It is obvious that additional samples are
needed to give them a recognizable form. With the assump-
tion that returns in all range cells belong to a family of
gamma density, it can be conjectured that the histogram of
normalized clutter returns for a single range cell can be
approximated by averaging the same from all range cells.
The normalization is accomplished by dividing the variable
by its local mean (i.e., z/u) for each range cell. This is
done and the result is plotted in Figure 6.2=4. The result
reasonably matches with a Rician density of DC/AC ratio
equal to 40 which is plotted in Figure 6.2-5. The gamma den-
sity with the shape factor k equal to that computed from the
samples used (k = 27.5) is also plotted in Figure 6.2-5.
Based on visual inspection, it can be seen that a better
match is possible if a shape factor somewhat less than that

computed is used.

The most significant findings are that the mean and vari-
ance of the clutter returns vary significantly from one
range cell to the next. This contrasts with the frequently
used conventional assumption. The values for samples from

one azimuth look are listed in Table 6.2-2 for illustration.
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Table 6.2-2
Range Cell to Range Cell Variation of Clutter Statistics

clutter power statistics

range cell # mean variance max. value min. value

7 136,383  2.2x10%° 254,530 86,725
9 2,528,749  s.8x101l 3,257,461 939,497
11 464,083 3.5x1010 914,689 197,640
15 382,682  6.9x10°° 517,985 153,493
17 90,185  1.7x10%° 141,520 13,253
19 1,706,289 1.6x101% 1,946,404 1,566,850
21 338,809  1.3x1010 472,066 122,509
23 1,225,326  7.7x109% 1,376,500 1,116,757
25 1,677,916  9.0x10*°® 2,002,568 1,081,825
27 229,145 4.0x10°° 322,592 117,625
29 581,995 2.8x10%9 941,845 411,956
33 458,439 2.2x%101° 862,948 332,100
35 2,431,334 1.8x10*t 3,075,201 1,667,818
37 3,427,057 6.2x101° 3,686,800 2,877,200
39 668,303 5.1x10%° 1,118,617 388,145
43 751,256 5.8x101% 1,039,725 273,320
4s 277,727 7.2x10°8 327,625 242,045
47 166,344 2.2x10°° 238,954 113,074
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6.2.2 Clutter Cancellation Techniques

In this section a performance comparison of three types
of clutter cancellers is made using live data collected from
a high PRF airborne pulse doppler radar. The three types of

clutter cancellers compared are

a. Velocity shaped IIR filter.

b. Delay line canceller with binomial coefficients as
its weight.

c. Optimum linear filter whose weights are derived from
the eigen vector corresponding to the minimum eigen

value of the clutter correlation matrix.

The velocity shaped IIR filter consists of two sections
of 2~-pole, 2-zero recursive digital filters in cascade whose
coefficients are chosen so as to give a flat magnitude re-~
sponse above its cutoff frequency which can be selected for

either 70 or 90 knots.

The filters of (b) and (c) above are known also as trans-
versal filters whose outputs are a weighted sum sn a sliding
window of the input sequence or the input vector. The out-~
put sequences of these filters are weighted and suﬁmed again
to produce a specific doppler filter output. A representa-
tion of the above processes in terms of matrix multiplica-

tions is given by Andrews ([30].
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According to linear optimum filter theory, the above pro-
cess can be performed by one operation. This is expressed

mathematically as
X =WY¥Y (6.2-7)

where x is the scalar output, Y = Z+S is the input column
vector consisting of the clutter plus thermal noise inter-
ference vector Z and the signal vector S, and w* is the

transpose of the complex conjugate of the weight vector Ww

defined as

We=M1lg (6.2-8)

and M is the correlation matrix of the interference process

assumed to be zero mean [31].

One difficulty with this approach is that the signal vec-
tor is a priori unknown. 1In this case the signal vector, in
particular its doppler frequency, is assumed to be equally
likely to be anywhere within frequency interval correspond-
ing to one PRF. Then, the optimum weight is given by the
eigen vector corresponding to the minimum eigen value of the

interference correlation matrix [32, 33].

The real difficulty with this optimum filter is that the

interference correlation matrix is also unknown and cannot
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be approximated from the adjacent range gate samples as as-
sumed by others (31, 34, 35]. This is because the clutter
statistics are different from one range cell to the next as
shown in the previous section. Furthermore, in a high PRF
radar the dimension of the correlation matrix is large
typically on the order of 128 or larger; and the loperation
indicated by Egqn. (6.2-7) and (6.2-8) is extremely diffi-
cult, if not impossible, to carry out. While M is a positive
definite Hermitian matrix in theory, an examination of real
clutter data shows that it.is highly ill conditioned. The
difficulty arises due to the high degree of clutter correla-
tion from pulse to pulse. At the same time, the correlation
is not perfect enough with the result, when binomial coef-
ficients are used as the weight, that the performance of the
delay 1line canceller deteriorates rather than improves as
the number of canceller stages increases beyond two. In ad-
dition Hsiao [37] shows, even under ideal assumptions such
as a known exponential auto-correlation function for the
clutter, that the increase in the clutter canceller improve-
ment factor diminishes rapidly as the number of stages is
increased beyond 7 or 8. These considerations limited the
number of stages for transversal filters examined in the
performance comparison to 7 making it an 8 pulse canceller

at the maximum.

In the data sample examined, there are approximately 175

pulses available for processing after the multiple time
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around echoes settle down in each CPI (see Figure 2.1-2).
With the velocity shaped IIR filter, a 128-point FFT follows
the clutter canceller after those pulses in the early por-
tion of the filter output are discarded during which the
filter goes through a transient period (see Figure 2.1-3).
For the transversal filters, there are no transient periods.
Thus, (175-N) output pulses are zero padded for a 256-point

FFT where N is the number of canceller stages.

The frequency span equal to one PRF of the data set cor-
responds approximately to a velocity span of 0 to 2,454
knots. In each trial, a synthetic target is injected with
varying amplitude at a doppler frequency corresponding to a
specific target velocity. The results with the velocity
shaped IIR filter are shown in Figures 6.2-6 (a) through
(d) together with those for a 2-stage delay line canceller
with binomial coefficients as its weights for comparison.
The two humps appearing near the right edge in the figure
correspond to (from left to right) the altitudeline clutter
and the first sideobe clutter, repectively. Different adap-
tive constant false a;arm rate (CFAR) thresholds are used in
these. range-doppler zones in the actual radar implementa-
tion. The results obtained using delay line cancellers with
binomial coefficient weights for canceller stages of 2, 3,
and 4 are shown in Figure 6.2-7. The canceller transfer
function (gain as a function of frequency) is superimposed

on the figure for visual aid. 1Increasing the number of
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stages beyond two resulted in performance degradation. This
is due to imperfect pulse-to-pulse clutter correlation. A
comparison of 2-stage and 7-stage cancellers is shown in
Figure 6.2-8. The performance deterioration is even more

evident.

_ The above results are for samples from range cell 33 at a
particular azimuthal direction. The results for different
range cells in the same azimuth set with the eigen vector
obtained from the estimated clutter correlation matrix as
filter weight are shown in Figures 6.2-9. Also shown in the
figure in parallel is the corresponding results with the IIR
filter. The transfer function for the transversal filter is
shown in Figure 6.2-10 for each of the rangé cells examined.
In computing the eigen vector, a sample correlation matrix,
which 1is an average of a set of 8x8 correlation matrices
each formed by the outer product of 8 pulses taken at 16 or
32 pulse interval from the received pulse train for the test
cell, 1is first obtained. The eigen values and eigen vectors
for the sample correlation matrix for each range cell sample
are then computed using the EISPACK computer program devel-
oped by Argonne National Laboratory on a mini VAX computer.
Without exception, in all trials some eigen values turned
out to be negative. The eigen vector corresponding to the
minimum positive eigen value was used to provide filter

weights for each range cell sample.
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Performance of Delay Line Cancellers with Binomial
Coefficients as Weghts:
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These results can be compared by visual inspection (the

best knowledge based detector). While subjective, it is ap-
parent that no one technique is noticeably superior to the
other for discriminating the injected synthetic target from
the clutter. As a matter of fact, performance of the opti-
mum filter (filter'with the eigen vector as its weight)
seems inferior to that of conventional filters used almost
exclusively in radar systems operating today. However, a
higher degree of reduction in amplitude of the altitudeline
and the first sidelobe clutter away from the mainbeam clut-

ter is quite evident when the optimum filter is employed.
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